From ced198e9390195875d743d77eadece99c7fd5b38 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Mon, 19 Mar 2018 23:17:26 +0000
Subject: [PATCH] Fixed gpu_id for DLL/SO

---
 src/network.c |   84 ++++++++++++++++++++++++++++++++++--------
 1 files changed, 68 insertions(+), 16 deletions(-)

diff --git a/src/network.c b/src/network.c
index 01b7962..61f87c5 100644
--- a/src/network.c
+++ b/src/network.c
@@ -41,7 +41,7 @@
     net.momentum = 0;
     net.decay = 0;
     #ifdef GPU
-        if(gpu_index >= 0) update_network_gpu(net);
+        //if(net.gpu_index >= 0) update_network_gpu(net);
     #endif
 }
 
@@ -50,6 +50,7 @@
     int batch_num = get_current_batch(net);
     int i;
     float rate;
+	if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
     switch (net.policy) {
         case CONSTANT:
             return net.learning_rate;
@@ -60,14 +61,15 @@
             for(i = 0; i < net.num_steps; ++i){
                 if(net.steps[i] > batch_num) return rate;
                 rate *= net.scales[i];
-                if(net.steps[i] > batch_num - 1) reset_momentum(net);
+                //if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net);
             }
             return rate;
         case EXP:
             return net.learning_rate * pow(net.gamma, batch_num);
         case POLY:
-            if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
-            return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+			return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+            //if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
+            //return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
         case RANDOM:
             return net.learning_rate * pow(rand_uniform(0,1), net.power);
         case SIG:
@@ -138,6 +140,11 @@
     #ifdef GPU
     net.input_gpu = calloc(1, sizeof(float *));
     net.truth_gpu = calloc(1, sizeof(float *));
+
+	net.input16_gpu = calloc(1, sizeof(float *));
+	net.output16_gpu = calloc(1, sizeof(float *));
+	net.max_input16_size = calloc(1, sizeof(size_t));
+	net.max_output16_size = calloc(1, sizeof(size_t));
     #endif
     return net;
 }
@@ -218,6 +225,7 @@
             state.delta = prev.delta;
         }
         layer l = net.layers[i];
+        if (l.stopbackward) break;
         l.backward(l, state);
     }
 }
@@ -313,7 +321,20 @@
         net->layers[i].batch = b;
 #ifdef CUDNN
         if(net->layers[i].type == CONVOLUTIONAL){
-            cudnn_convolutional_setup(net->layers + i);
+			cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
+			/*
+			layer *l = net->layers + i;
+            cudnn_convolutional_setup(l, cudnn_fastest);
+			// check for excessive memory consumption 
+			size_t free_byte;
+			size_t total_byte;
+			check_error(cudaMemGetInfo(&free_byte, &total_byte));
+			if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
+				printf(" used slow CUDNN algo without Workspace! \n");
+				cudnn_convolutional_setup(l, cudnn_smallest);
+				l->workspace_size = get_workspace_size(*l);
+			}
+			*/
         }
 #endif
     }
@@ -321,6 +342,18 @@
 
 int resize_network(network *net, int w, int h)
 {
+#ifdef GPU
+    cuda_set_device(net->gpu_index);
+    if(gpu_index >= 0){
+        cuda_free(net->workspace);
+		if (net->input_gpu) {
+			cuda_free(*net->input_gpu);
+			*net->input_gpu = 0;
+			cuda_free(*net->truth_gpu);
+			*net->truth_gpu = 0;
+		}
+    }
+#endif
     int i;
     //if(w == net->w && h == net->h) return 0;
     net->w = w;
@@ -331,12 +364,19 @@
     //fflush(stderr);
     for (i = 0; i < net->n; ++i){
         layer l = net->layers[i];
+		//printf(" %d: layer = %d,", i, l.type);
         if(l.type == CONVOLUTIONAL){
             resize_convolutional_layer(&l, w, h);
         }else if(l.type == CROP){
             resize_crop_layer(&l, w, h);
         }else if(l.type == MAXPOOL){
             resize_maxpool_layer(&l, w, h);
+        }else if(l.type == REGION){
+            resize_region_layer(&l, w, h);
+        }else if(l.type == ROUTE){
+            resize_route_layer(&l, net);
+		}else if (l.type == SHORTCUT) {
+			resize_shortcut_layer(&l, w, h);
         }else if(l.type == REORG){
             resize_reorg_layer(&l, w, h);
         }else if(l.type == AVGPOOL){
@@ -346,6 +386,7 @@
         }else if(l.type == COST){
             resize_cost_layer(&l, inputs);
         }else{
+			fprintf(stderr, "Resizing type %d \n", (int)l.type);
             error("Cannot resize this type of layer");
         }
         if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
@@ -357,8 +398,9 @@
     }
 #ifdef GPU
     if(gpu_index >= 0){
-        cuda_free(net->workspace);
+		printf(" try to allocate workspace = %zu * sizeof(float), ", (workspace_size - 1) / sizeof(float) + 1);
         net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+		printf(" CUDA allocate done! \n");
     }else {
         free(net->workspace);
         net->workspace = calloc(1, workspace_size);
@@ -565,7 +607,6 @@
     return acc;
 }
 
-
 float network_accuracy_multi(network net, data d, int n)
 {
     matrix guess = network_predict_data_multi(net, d, n);
@@ -576,15 +617,26 @@
 
 void free_network(network net)
 {
-    int i;
-    for(i = 0; i < net.n; ++i){
-        free_layer(net.layers[i]);
-    }
-    free(net.layers);
+	int i;
+	for (i = 0; i < net.n; ++i) {
+		free_layer(net.layers[i]);
+	}
+	free(net.layers);
 #ifdef GPU
-    if(*net.input_gpu) cuda_free(*net.input_gpu);
-    if(*net.truth_gpu) cuda_free(*net.truth_gpu);
-    if(net.input_gpu) free(net.input_gpu);
-    if(net.truth_gpu) free(net.truth_gpu);
+	if (gpu_index >= 0) cuda_free(net.workspace);
+	else free(net.workspace);
+	if (*net.input_gpu) cuda_free(*net.input_gpu);
+	if (*net.truth_gpu) cuda_free(*net.truth_gpu);
+	if (net.input_gpu) free(net.input_gpu);
+	if (net.truth_gpu) free(net.truth_gpu);
+
+	if (*net.input16_gpu) cuda_free(*net.input16_gpu);
+	if (*net.output16_gpu) cuda_free(*net.output16_gpu);
+	if (net.input16_gpu) free(net.input16_gpu);
+	if (net.output16_gpu) free(net.output16_gpu);
+	if (net.max_input16_size) free(net.max_input16_size);
+	if (net.max_output16_size) free(net.max_output16_size);
+#else
+	free(net.workspace);
 #endif
 }

--
Gitblit v1.10.0