From cf0300ea55538d4ca139d68cd24b0ee452cce015 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sat, 28 Mar 2015 00:32:01 +0000
Subject: [PATCH] dropout probably ok

---
 src/detection.c |   58 +++++++++++++++++++++++++++++-----------------------------
 1 files changed, 29 insertions(+), 29 deletions(-)

diff --git a/src/detection.c b/src/detection.c
index fa8b38c..69202aa 100644
--- a/src/detection.c
+++ b/src/detection.c
@@ -3,11 +3,11 @@
 #include "parser.h"
 
 
-char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
+char *class_names[] = {"bg", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
 #define AMNT 3
 void draw_detection(image im, float *box, int side)
 {
-    int classes = 20;
+    int classes = 21;
     int elems = 4+classes;
     int j;
     int r, c;
@@ -45,11 +45,12 @@
 {
     char *base = basecfg(cfgfile);
     printf("%s\n", base);
-    float avg_loss = 1;
+    float avg_loss = -1;
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    //net.seen = 0;
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 128;
     srand(time(0));
@@ -61,27 +62,29 @@
     data train, buffer;
     int im_dim = 512;
     int jitter = 64;
-    int classes = 21;
-    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
+    int classes = 20;
+    int background = 1;
+    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
     clock_t time;
     while(1){
         i += 1;
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
+        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
 
-        /*
-           image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
-           draw_detection(im, train.y.vals[0], 7);
+/*
+           image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[114]);
+           draw_detection(im, train.y.vals[114], 7);
            show_image(im, "truth");
            cvWaitKey(0);
-         */
+*/
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
         float loss = train_network(net, train);
         net.seen += imgs;
+        if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
         if(i%100==0){
@@ -103,10 +106,13 @@
     srand(time(0));
 
     list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
+    //list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
     char **paths = (char **)list_to_array(plist);
-    int num_output = 1225;
     int im_size = 448;
-    int classes = 21;
+    int classes = 20;
+    int background = 0;
+    int nuisance = 1;
+    int num_output = 7*7*(4+classes+background+nuisance);
 
     int m = plist->size;
     int i = 0;
@@ -130,26 +136,20 @@
         matrix pred = network_predict_data(net, val);
         int j, k, class;
         for(j = 0; j < pred.rows; ++j){
-            for(k = 0; k < pred.cols; k += classes+4){
-
-                /*
-                   int z;
-                   for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
-                   printf("\n");
-                 */
-
-                //if (pred.vals[j][k] > .001){
-                for(class = 0; class < classes-1; ++class){
-                    int index = (k)/(classes+4); 
+            for(k = 0; k < pred.cols; k += classes+4+background+nuisance){
+                float scale = 1.;
+                if(nuisance) scale = 1.-pred.vals[j][k];
+                for(class = 0; class < classes; ++class){
+                    int index = (k)/(classes+4+background+nuisance); 
                     int r = index/7;
                     int c = index%7;
-                    float y = (r + pred.vals[j][k+0+classes])/7.;
-                    float x = (c + pred.vals[j][k+1+classes])/7.;
-                    float h = pred.vals[j][k+2+classes];
-                    float w = pred.vals[j][k+3+classes];
-                    printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
+                    int ci = k+classes+background+nuisance;
+                    float y = (r + pred.vals[j][ci + 0])/7.;
+                    float x = (c + pred.vals[j][ci + 1])/7.;
+                    float h = pred.vals[j][ci + 2];
+                    float w = pred.vals[j][ci + 3];
+                    printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], y, x, h, w);
                 }
-                //}
             }
         }
 

--
Gitblit v1.10.0