From cfc5fedbb6df2471493b1ec162d0024485618211 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Tue, 10 Jul 2018 20:29:15 +0000
Subject: [PATCH] Just used spaces for indents instead of Tabs
---
src/batchnorm_layer.c | 152 +++++++++++++++++++++++++-------------------------
1 files changed, 76 insertions(+), 76 deletions(-)
diff --git a/src/batchnorm_layer.c b/src/batchnorm_layer.c
index d35d9d2..3fa129d 100644
--- a/src/batchnorm_layer.c
+++ b/src/batchnorm_layer.c
@@ -53,10 +53,10 @@
layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
#ifdef CUDNN
- cudnnCreateTensorDescriptor(&layer.normTensorDesc);
- cudnnCreateTensorDescriptor(&layer.normDstTensorDesc);
- cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
- cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
+ cudnnCreateTensorDescriptor(&layer.normTensorDesc);
+ cudnnCreateTensorDescriptor(&layer.normDstTensorDesc);
+ cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
+ cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
#endif
#endif
return layer;
@@ -179,93 +179,93 @@
void forward_batchnorm_layer_gpu(layer l, network_state state)
{
- if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
- copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
- if (state.train) {
+ if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
+ copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+ if (state.train) {
#ifdef CUDNN
- float one = 1;
- float zero = 0;
- cudnnBatchNormalizationForwardTraining(cudnn_handle(),
- CUDNN_BATCHNORM_SPATIAL,
- &one,
- &zero,
- l.normDstTensorDesc,
- l.x_gpu, // input
- l.normDstTensorDesc,
- l.output_gpu, // output
- l.normTensorDesc,
- l.scales_gpu,
- l.biases_gpu,
- .01,
- l.rolling_mean_gpu, // output (should be FP32)
- l.rolling_variance_gpu, // output (should be FP32)
- .00001,
- l.mean_gpu, // output (should be FP32)
- l.variance_gpu); // output (should be FP32)
+ float one = 1;
+ float zero = 0;
+ cudnnBatchNormalizationForwardTraining(cudnn_handle(),
+ CUDNN_BATCHNORM_SPATIAL,
+ &one,
+ &zero,
+ l.normDstTensorDesc,
+ l.x_gpu, // input
+ l.normDstTensorDesc,
+ l.output_gpu, // output
+ l.normTensorDesc,
+ l.scales_gpu,
+ l.biases_gpu,
+ .01,
+ l.rolling_mean_gpu, // output (should be FP32)
+ l.rolling_variance_gpu, // output (should be FP32)
+ .00001,
+ l.mean_gpu, // output (should be FP32)
+ l.variance_gpu); // output (should be FP32)
#else
- fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
- fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
+ fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
+ fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
- scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
- axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
- scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
- axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
+ scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
+ axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
+ scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
+ axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
- copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
- normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
+ copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+ normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+ copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
- scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+ scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+ add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
#endif
- }
- else {
- normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
- }
+ }
+ else {
+ normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+ scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+ add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+ }
}
void backward_batchnorm_layer_gpu(layer l, network_state state)
{
- if (!state.train) {
- l.mean_gpu = l.rolling_mean_gpu;
- l.variance_gpu = l.rolling_variance_gpu;
- }
+ if (!state.train) {
+ l.mean_gpu = l.rolling_mean_gpu;
+ l.variance_gpu = l.rolling_variance_gpu;
+ }
#ifdef CUDNN
- float one = 1;
- float zero = 0;
- cudnnBatchNormalizationBackward(cudnn_handle(),
- CUDNN_BATCHNORM_SPATIAL,
- &one,
- &zero,
- &one,
- &one,
- l.normDstTensorDesc,
- l.x_gpu, // input
- l.normDstTensorDesc,
- l.delta_gpu, // input
- l.normDstTensorDesc,
- l.x_norm_gpu, // output
- l.normTensorDesc,
- l.scales_gpu, // output (should be FP32)
- l.scale_updates_gpu, // output (should be FP32)
- l.bias_updates_gpu, // output (should be FP32)
- .00001,
- l.mean_gpu, // input (should be FP32)
- l.variance_gpu); // input (should be FP32)
- copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
+ float one = 1;
+ float zero = 0;
+ cudnnBatchNormalizationBackward(cudnn_handle(),
+ CUDNN_BATCHNORM_SPATIAL,
+ &one,
+ &zero,
+ &one,
+ &one,
+ l.normDstTensorDesc,
+ l.x_gpu, // input
+ l.normDstTensorDesc,
+ l.delta_gpu, // input
+ l.normDstTensorDesc,
+ l.x_norm_gpu, // output
+ l.normTensorDesc,
+ l.scales_gpu, // output (should be FP32)
+ l.scale_updates_gpu, // output (should be FP32)
+ l.bias_updates_gpu, // output (should be FP32)
+ .00001,
+ l.mean_gpu, // input (should be FP32)
+ l.variance_gpu); // input (should be FP32)
+ copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
#else
- backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
- backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
+ backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+ backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
- scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+ scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
- fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
- fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
- normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
+ fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
+ fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
+ normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
#endif
- if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
+ if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
}
#endif
\ No newline at end of file
--
Gitblit v1.10.0