From d0b9326a352ed2fbc3ae66fdef40b4533a2f211d Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 11 Aug 2015 06:22:27 +0000
Subject: [PATCH] Hacks to get nightmare to not break gridsizing

---
 src/convolutional_kernels.cu |   24 +++++++++++-------------
 1 files changed, 11 insertions(+), 13 deletions(-)

diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 9f0a2f8..a150c20 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -17,16 +17,16 @@
     if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter];
 }
 
-extern "C" void bias_output_gpu(float *output, float *biases, int batch, int n, int size)
+void bias_output_gpu(float *output, float *biases, int batch, int n, int size)
 {
-    dim3 dimBlock(BLOCK, 1, 1);
     dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
+    dim3 dimBlock(BLOCK, 1, 1);
 
     bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
     check_error(cudaPeekAtLastError());
 }
 
-__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size, float scale)
+__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size)
 {
     __shared__ float part[BLOCK];
     int i,b;
@@ -42,17 +42,17 @@
     part[p] = sum;
     __syncthreads();
     if(p == 0){
-        for(i = 0; i < BLOCK; ++i) bias_updates[filter] += scale * part[i];
+        for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i];
     }
 }
 
-extern "C" void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
+void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
 {
-    backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, 1);
+    backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size);
     check_error(cudaPeekAtLastError());
 }
 
-extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
+void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
 {
     int i;
     int m = layer.n;
@@ -71,7 +71,7 @@
     activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation);
 }
 
-extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
+void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
 {
     int i;
     int m = layer.n;
@@ -82,8 +82,6 @@
     gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
     backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k);
 
-    if(state.delta) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, state.delta, 1);
-
     for(i = 0; i < layer.batch; ++i){
         float * a = layer.delta_gpu;
         float * b = layer.col_image_gpu;
@@ -105,7 +103,7 @@
     }
 }
 
-extern "C" void pull_convolutional_layer(convolutional_layer layer)
+void pull_convolutional_layer(convolutional_layer layer)
 {
     cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
     cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
@@ -113,7 +111,7 @@
     cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
 }
 
-extern "C" void push_convolutional_layer(convolutional_layer layer)
+void push_convolutional_layer(convolutional_layer layer)
 {
     cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
     cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
@@ -121,7 +119,7 @@
     cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
 }
 
-extern "C" void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
+void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
 

--
Gitblit v1.10.0