From d0b9326a352ed2fbc3ae66fdef40b4533a2f211d Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 11 Aug 2015 06:22:27 +0000
Subject: [PATCH] Hacks to get nightmare to not break gridsizing

---
 src/detection.c |  302 +++++++++++++++++++++++++++++++++----------------
 1 files changed, 202 insertions(+), 100 deletions(-)

diff --git a/src/detection.c b/src/detection.c
index fa8b38c..f595701 100644
--- a/src/detection.c
+++ b/src/detection.c
@@ -1,96 +1,174 @@
 #include "network.h"
+#include "detection_layer.h"
+#include "cost_layer.h"
 #include "utils.h"
 #include "parser.h"
+#include "box.h"
 
 
 char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-#define AMNT 3
-void draw_detection(image im, float *box, int side)
+
+void draw_detection(image im, float *box, int side, int objectness, char *label)
 {
     int classes = 20;
-    int elems = 4+classes;
+    int elems = 4+classes+objectness;
     int j;
     int r, c;
 
     for(r = 0; r < side; ++r){
         for(c = 0; c < side; ++c){
             j = (r*side + c) * elems;
-            //printf("%d\n", j);
-            //printf("Prob: %f\n", box[j]);
+            float scale = 1;
+            if(objectness) scale = 1 - box[j++];
             int class = max_index(box+j, classes);
-            if(box[j+class] > .02 || 1){
-                //int z;
-                //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
-                printf("%f %s\n", box[j+class], class_names[class]);
+            if(scale * box[j+class] > 0.2){
+                int width = box[j+class]*5 + 1;
+                printf("%f %s\n", scale * box[j+class], class_names[class]);
                 float red = get_color(0,class,classes);
                 float green = get_color(1,class,classes);
                 float blue = get_color(2,class,classes);
 
                 j += classes;
-                int d = im.w/side;
-                int y = r*d+box[j]*d;
-                int x = c*d+box[j+1]*d;
-                int h = box[j+2]*im.h;
-                int w = box[j+3]*im.w;
-                draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue);
+                float x = box[j+0];
+                float y = box[j+1];
+                x = (x+c)/side;
+                y = (y+r)/side;
+                float w = box[j+2]; //*maxwidth;
+                float h = box[j+3]; //*maxheight;
+                h = h*h;
+                w = w*w;
+
+                int left  = (x-w/2)*im.w;
+                int right = (x+w/2)*im.w;
+                int top   = (y-h/2)*im.h;
+                int bot   = (y+h/2)*im.h;
+                draw_box_width(im, left, top, right, bot, width, red, green, blue);
             }
         }
     }
-    //printf("Done\n");
-    show_image(im, "box");
-    cvWaitKey(0);
+    show_image(im, label);
 }
 
 void train_detection(char *cfgfile, char *weightfile)
 {
+    char *train_images = "/home/pjreddie/data/voc/test/train.txt";
+    char *backup_directory = "/home/pjreddie/backup/";
+    srand(time(0));
+    data_seed = time(0);
     char *base = basecfg(cfgfile);
     printf("%s\n", base);
-    float avg_loss = 1;
+    float avg_loss = -1;
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    detection_layer layer = get_network_detection_layer(net);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 128;
-    srand(time(0));
-    //srand(23410);
     int i = net.seen/imgs;
-    list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
-    char **paths = (char **)list_to_array(plist);
-    printf("%d\n", plist->size);
     data train, buffer;
-    int im_dim = 512;
-    int jitter = 64;
-    int classes = 21;
-    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
+
+    int classes = layer.classes;
+    int background = layer.objectness;
+    int side = sqrt(get_detection_layer_locations(layer));
+
+    char **paths;
+    list *plist = get_paths(train_images);
+    int N = plist->size;
+
+    paths = (char **)list_to_array(plist);
+    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
     clock_t time;
-    while(1){
+    while(i*imgs < N*130){
         i += 1;
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
-
-        /*
-           image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
-           draw_detection(im, train.y.vals[0], 7);
-           show_image(im, "truth");
-           cvWaitKey(0);
-         */
+        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
         float loss = train_network(net, train);
         net.seen += imgs;
+        if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
+
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
-        if(i%100==0){
+        if((i-1)*imgs <= N && i*imgs > N){
+            fprintf(stderr, "First stage done\n");
+            net.learning_rate *= 10;
             char buff[256];
-            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+            sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base);
+            save_weights(net, buff);
+        }
+        if((i-1)*imgs <= 80*N && i*imgs > N*80){
+            fprintf(stderr, "Second stage done.\n");
+            net.learning_rate *= .1;
+            char buff[256];
+            sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base);
+            save_weights(net, buff);
+            return;
+        }
+        if((i-1)*imgs <= 120*N && i*imgs > N*120){
+            fprintf(stderr, "Third stage done.\n");
+            char buff[256];
+            sprintf(buff, "%s/%s_third_stage.weights", backup_directory, base);
+            net.layers[net.n-1].rescore = 1;
+            save_weights(net, buff);
+        }
+        if(i%1000==0){
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
             save_weights(net, buff);
         }
         free_data(train);
     }
+    char buff[256];
+    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
+    save_weights(net, buff);
+}
+
+void convert_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
+{
+    int i,j;
+    int per_box = 4+classes+(background || objectness);
+    for (i = 0; i < num_boxes*num_boxes; ++i){
+        float scale = 1;
+        if(objectness) scale = 1-predictions[i*per_box];
+        int offset = i*per_box+(background||objectness);
+        for(j = 0; j < classes; ++j){
+            float prob = scale*predictions[offset+j];
+            probs[i][j] = (prob > thresh) ? prob : 0;
+        }
+        int row = i / num_boxes;
+        int col = i % num_boxes;
+        offset += classes;
+        boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w;
+        boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h;
+        boxes[i].w = pow(predictions[offset + 2], 2) * w;
+        boxes[i].h = pow(predictions[offset + 3], 2) * h;
+    }
+}
+
+void print_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
+{
+    int i, j;
+    for(i = 0; i < num_boxes*num_boxes; ++i){
+        float xmin = boxes[i].x - boxes[i].w/2.;
+        float xmax = boxes[i].x + boxes[i].w/2.;
+        float ymin = boxes[i].y - boxes[i].h/2.;
+        float ymax = boxes[i].y + boxes[i].h/2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        for(j = 0; j < classes; ++j){
+            if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
+                    xmin, ymin, xmax, ymax);
+        }
+    }
 }
 
 void validate_detection(char *cfgfile, char *weightfile)
@@ -99,89 +177,112 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    set_batch_network(&net, 1);
+    detection_layer layer = get_network_detection_layer(net);
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
-    list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
+    char *base = "results/comp4_det_test_";
+    list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
     char **paths = (char **)list_to_array(plist);
-    int num_output = 1225;
-    int im_size = 448;
-    int classes = 21;
+
+    int classes = layer.classes;
+    int objectness = layer.objectness;
+    int background = layer.background;
+    int num_boxes = sqrt(get_detection_layer_locations(layer));
+
+    int j;
+    FILE **fps = calloc(classes, sizeof(FILE *));
+    for(j = 0; j < classes; ++j){
+        char buff[1024];
+        snprintf(buff, 1024, "%s%s.txt", base, class_names[j]);
+        fps[j] = fopen(buff, "w");
+    }
+    box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
+    float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
+    for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
 
     int m = plist->size;
-    int i = 0;
-    int splits = 100;
-    int num = (i+1)*m/splits - i*m/splits;
+    int i=0;
+    int t;
 
-    fprintf(stderr, "%d\n", m);
-    data val, buffer;
-    pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer);
-    clock_t time;
-    for(i = 1; i <= splits; ++i){
-        time=clock();
-        pthread_join(load_thread, 0);
-        val = buffer;
+    float thresh = .001;
+    int nms = 1;
+    float iou_thresh = .5;
 
-        num = (i+1)*m/splits - i*m/splits;
-        char **part = paths+(i*m/splits);
-        if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
-
-        fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
-        matrix pred = network_predict_data(net, val);
-        int j, k, class;
-        for(j = 0; j < pred.rows; ++j){
-            for(k = 0; k < pred.cols; k += classes+4){
-
-                /*
-                   int z;
-                   for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
-                   printf("\n");
-                 */
-
-                //if (pred.vals[j][k] > .001){
-                for(class = 0; class < classes-1; ++class){
-                    int index = (k)/(classes+4); 
-                    int r = index/7;
-                    int c = index%7;
-                    float y = (r + pred.vals[j][k+0+classes])/7.;
-                    float x = (c + pred.vals[j][k+1+classes])/7.;
-                    float h = pred.vals[j][k+2+classes];
-                    float w = pred.vals[j][k+3+classes];
-                    printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
-                }
-                //}
-            }
-        }
-
-        time=clock();
-        free_data(val);
+    int nthreads = 8;
+    image *val = calloc(nthreads, sizeof(image));
+    image *val_resized = calloc(nthreads, sizeof(image));
+    image *buf = calloc(nthreads, sizeof(image));
+    image *buf_resized = calloc(nthreads, sizeof(image));
+    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
+    for(t = 0; t < nthreads; ++t){
+        thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
     }
+    time_t start = time(0);
+    for(i = nthreads; i < m+nthreads; i += nthreads){
+        fprintf(stderr, "%d\n", i);
+        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+            pthread_join(thr[t], 0);
+            val[t] = buf[t];
+            val_resized[t] = buf_resized[t];
+        }
+        for(t = 0; t < nthreads && i+t < m; ++t){
+            thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
+        }
+        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+            char *path = paths[i+t-nthreads];
+            char *id = basecfg(path);
+            float *X = val_resized[t].data;
+            float *predictions = network_predict(net, X);
+            int w = val[t].w;
+            int h = val[t].h;
+            convert_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
+            if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
+            print_detections(fps, id, boxes, probs, num_boxes, classes, w, h);
+            free(id);
+            free_image(val[t]);
+            free_image(val_resized[t]);
+        }
+    }
+    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
-void test_detection(char *cfgfile, char *weightfile)
+void test_detection(char *cfgfile, char *weightfile, char *filename)
 {
+
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
-    int im_size = 448;
+    detection_layer layer = get_network_detection_layer(net);
     set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
-    char filename[256];
+    char input[256];
     while(1){
-        fgets(filename, 256, stdin);
-        strtok(filename, "\n");
-        image im = load_image_color(filename, im_size, im_size);
-        translate_image(im, -128);
-        scale_image(im, 1/128.);
-        printf("%d %d %d\n", im.h, im.w, im.c);
-        float *X = im.data;
+        if(filename){
+            strncpy(input, filename, 256);
+        } else {
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            fgets(input, 256, stdin);
+            strtok(input, "\n");
+        }
+        image im = load_image_color(input,0,0);
+        image sized = resize_image(im, net.w, net.h);
+        float *X = sized.data;
         time=clock();
         float *predictions = network_predict(net, X);
-        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
-        draw_detection(im, predictions, 7);
+        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+        draw_detection(im, predictions, 7, layer.objectness, "predictions");
         free_image(im);
+        free_image(sized);
+#ifdef OPENCV
+        cvWaitKey(0);
+        cvDestroyAllWindows();
+#endif
+        if (filename) break;
     }
 }
 
@@ -194,7 +295,8 @@
 
     char *cfg = argv[3];
     char *weights = (argc > 4) ? argv[4] : 0;
-    if(0==strcmp(argv[2], "test")) test_detection(cfg, weights);
+    char *filename = (argc > 5) ? argv[5]: 0;
+    if(0==strcmp(argv[2], "test")) test_detection(cfg, weights, filename);
     else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights);
     else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
 }

--
Gitblit v1.10.0