From d0b9326a352ed2fbc3ae66fdef40b4533a2f211d Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 11 Aug 2015 06:22:27 +0000
Subject: [PATCH] Hacks to get nightmare to not break gridsizing

---
 src/network.c |   96 +++++++++++++++++++++++++++++-------------------
 1 files changed, 58 insertions(+), 38 deletions(-)

diff --git a/src/network.c b/src/network.c
index 68790e5..ff5cd61 100644
--- a/src/network.c
+++ b/src/network.c
@@ -4,13 +4,16 @@
 #include "image.h"
 #include "data.h"
 #include "utils.h"
+#include "blas.h"
 
 #include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
 #include "deconvolutional_layer.h"
 #include "detection_layer.h"
+#include "normalization_layer.h"
 #include "maxpool_layer.h"
+#include "avgpool_layer.h"
 #include "cost_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
@@ -27,6 +30,8 @@
             return "connected";
         case MAXPOOL:
             return "maxpool";
+        case AVGPOOL:
+            return "avgpool";
         case SOFTMAX:
             return "softmax";
         case DETECTION:
@@ -39,6 +44,8 @@
             return "cost";
         case ROUTE:
             return "route";
+        case NORMALIZATION:
+            return "normalization";
         default:
             break;
     }
@@ -62,10 +69,15 @@
     int i;
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
+        if(l.delta){
+            scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
+        }
         if(l.type == CONVOLUTIONAL){
             forward_convolutional_layer(l, state);
         } else if(l.type == DECONVOLUTIONAL){
             forward_deconvolutional_layer(l, state);
+        } else if(l.type == NORMALIZATION){
+            forward_normalization_layer(l, state);
         } else if(l.type == DETECTION){
             forward_detection_layer(l, state);
         } else if(l.type == CONNECTED){
@@ -78,6 +90,8 @@
             forward_softmax_layer(l, state);
         } else if(l.type == MAXPOOL){
             forward_maxpool_layer(l, state);
+        } else if(l.type == AVGPOOL){
+            forward_avgpool_layer(l, state);
         } else if(l.type == DROPOUT){
             forward_dropout_layer(l, state);
         } else if(l.type == ROUTE){
@@ -112,13 +126,20 @@
 
 float get_network_cost(network net)
 {
-    if(net.layers[net.n-1].type == COST){
-        return net.layers[net.n-1].output[0];
+    int i;
+    float sum = 0;
+    int count = 0;
+    for(i = 0; i < net.n; ++i){
+        if(net.layers[net.n-1].type == COST){
+            sum += net.layers[net.n-1].output[0];
+            ++count;
+        }
+        if(net.layers[net.n-1].type == DETECTION){
+            sum += net.layers[net.n-1].cost[0];
+            ++count;
+        }
     }
-    if(net.layers[net.n-1].type == DETECTION){
-        return net.layers[net.n-1].cost[0];
-    }
-    return 0;
+    return sum/count;
 }
 
 int get_predicted_class_network(network net)
@@ -132,10 +153,11 @@
 {
     int i;
     float *original_input = state.input;
+    float *original_delta = state.delta;
     for(i = net.n-1; i >= 0; --i){
         if(i == 0){
             state.input = original_input;
-            state.delta = 0;
+            state.delta = original_delta;
         }else{
             layer prev = net.layers[i-1];
             state.input = prev.output;
@@ -146,8 +168,12 @@
             backward_convolutional_layer(l, state);
         } else if(l.type == DECONVOLUTIONAL){
             backward_deconvolutional_layer(l, state);
+        } else if(l.type == NORMALIZATION){
+            backward_normalization_layer(l, state);
         } else if(l.type == MAXPOOL){
             if(i != 0) backward_maxpool_layer(l, state);
+        } else if(l.type == AVGPOOL){
+            backward_avgpool_layer(l, state);
         } else if(l.type == DROPOUT){
             backward_dropout_layer(l, state);
         } else if(l.type == DETECTION){
@@ -166,11 +192,12 @@
 
 float train_network_datum(network net, float *x, float *y)
 {
-    #ifdef GPU
+#ifdef GPU
     if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
-    #endif
+#endif
     network_state state;
     state.input = x;
+    state.delta = 0;
     state.truth = y;
     state.train = 1;
     forward_network(net, state);
@@ -224,6 +251,7 @@
     int i,j;
     network_state state;
     state.train = 1;
+    state.delta = 0;
     float sum = 0;
     int batch = 2;
     for(i = 0; i < n; ++i){
@@ -249,43 +277,35 @@
     }
 }
 
-/*
-int resize_network(network net, int h, int w, int c)
+int resize_network(network *net, int w, int h)
 {
-    fprintf(stderr, "Might be broken, careful!!");
     int i;
-    for (i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
-            resize_convolutional_layer(layer, h, w);
-            image output = get_convolutional_image(*layer);
-            h = output.h;
-            w = output.w;
-            c = output.c;
-        } else if(net.types[i] == DECONVOLUTIONAL){
-            deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
-            resize_deconvolutional_layer(layer, h, w);
-            image output = get_deconvolutional_image(*layer);
-            h = output.h;
-            w = output.w;
-            c = output.c;
-        }else if(net.types[i] == MAXPOOL){
-            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
-            resize_maxpool_layer(layer, h, w);
-            image output = get_maxpool_image(*layer);
-            h = output.h;
-            w = output.w;
-            c = output.c;
-        }else if(net.types[i] == DROPOUT){
-            dropout_layer *layer = (dropout_layer *)net.layers[i];
-            resize_dropout_layer(layer, h*w*c);
+    //if(w == net->w && h == net->h) return 0;
+    net->w = w;
+    net->h = h;
+    //fprintf(stderr, "Resizing to %d x %d...", w, h);
+    //fflush(stderr);
+    for (i = 0; i < net->n; ++i){
+        layer l = net->layers[i];
+        if(l.type == CONVOLUTIONAL){
+            resize_convolutional_layer(&l, w, h);
+        }else if(l.type == MAXPOOL){
+            resize_maxpool_layer(&l, w, h);
+        }else if(l.type == AVGPOOL){
+            resize_avgpool_layer(&l, w, h);
+            break;
+        }else if(l.type == NORMALIZATION){
+            resize_normalization_layer(&l, w, h);
         }else{
             error("Cannot resize this type of layer");
         }
+        net->layers[i] = l;
+        w = l.out_w;
+        h = l.out_h;
     }
+    //fprintf(stderr, " Done!\n");
     return 0;
 }
-*/
 
 int get_network_output_size(network net)
 {

--
Gitblit v1.10.0