From d1965bdb969920c85f72785ec6e1f3d7bda957de Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Mar 2016 06:18:42 +0000
Subject: [PATCH] Go
---
src/yolo.c | 10
src/coco_demo.c | 10
src/matrix.c | 42 +
src/cifar.c | 163 +++
src/matrix.h | 3
Makefile | 10
src/data.c | 85 ++
cfg/go.test.cfg | 67 +
src/classifier.c | 93 +
src/go.c | 249 +++++
src/data.h | 2
/dev/null | 151 ---
src/image.c | 1348 ++++++++++++++++---------------
src/tag.c | 11
src/yolo_demo.c | 125 ++
src/blas.c | 4
src/parser.c | 9
src/convolutional_kernels.cu | 51 +
src/blas_kernels.cu | 16
src/darknet.c | 9
src/image.h | 2
src/layer.h | 1
22 files changed, 1,603 insertions(+), 858 deletions(-)
diff --git a/Makefile b/Makefile
index 528437d..2ecf6cc 100644
--- a/Makefile
+++ b/Makefile
@@ -1,8 +1,8 @@
-GPU=1
-OPENCV=1
+GPU=0
+OPENCV=0
DEBUG=0
-ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
+ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
VPATH=./src/
EXEC=darknet
@@ -34,9 +34,9 @@
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif
-OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o
+OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o
ifeq ($(GPU), 1)
-OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o yolo_kernels.o
+OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
endif
OBJS = $(addprefix $(OBJDIR), $(OBJ))
diff --git a/cfg/go.test.cfg b/cfg/go.test.cfg
new file mode 100644
index 0000000..700d4f1
--- /dev/null
+++ b/cfg/go.test.cfg
@@ -0,0 +1,67 @@
+[net]
+batch=1
+subdivisions=1
+height=19
+width=19
+channels=1
+momentum=0.9
+decay=0.0005
+
+learning_rate=0.1
+max_batches = 0
+policy=steps
+steps=50000, 90000
+scales=.1, .1
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+batch_normalize=1
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+batch_normalize=1
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+batch_normalize=1
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+batch_normalize=1
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+batch_normalize=1
+
+[convolutional]
+filters=1
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[softmax]
+
+[cost]
+type=sse
+
diff --git a/src/blas.c b/src/blas.c
index 978f1ed..35a4c40 100644
--- a/src/blas.c
+++ b/src/blas.c
@@ -46,7 +46,7 @@
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
{
- float scale = 1./(batch * spatial);
+ float scale = 1./(batch * spatial - 1);
int i,j,k;
for(i = 0; i < filters; ++i){
variance[i] = 0;
@@ -67,7 +67,7 @@
for(f = 0; f < filters; ++f){
for(i = 0; i < spatial; ++i){
int index = b*filters*spatial + f*spatial + i;
- x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .00001f);
+ x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
}
}
}
diff --git a/src/blas_kernels.cu b/src/blas_kernels.cu
index be0e553..98366f8 100644
--- a/src/blas_kernels.cu
+++ b/src/blas_kernels.cu
@@ -15,7 +15,7 @@
if (index >= N) return;
int f = (index/spatial)%filters;
- x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .00001f);
+ x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
}
__global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -24,7 +24,7 @@
if (index >= N) return;
int f = (index/spatial)%filters;
- delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+ delta[index] = delta[index] * 1./(sqrt(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
}
extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -46,7 +46,7 @@
variance_delta[i] += delta[index]*(x[index] - mean[i]);
}
}
- variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
+ variance_delta[i] *= -.5 * pow(variance[i] + .000001f, (float)(-3./2.));
}
__global__ void accumulate_kernel(float *x, int n, int groups, float *sum)
@@ -83,7 +83,7 @@
for(i = 0; i < threads; ++i){
mean_delta[filter] += local[i];
}
- mean_delta[filter] *= (-1./sqrt(variance[filter] + .00001f));
+ mean_delta[filter] *= (-1./sqrt(variance[filter] + .000001f));
}
}
@@ -111,7 +111,7 @@
for(i = 0; i < threads; ++i){
variance_delta[filter] += local[i];
}
- variance_delta[filter] *= -.5 * pow(variance[filter] + .00001f, (float)(-3./2.));
+ variance_delta[filter] *= -.5 * pow(variance[filter] + .000001f, (float)(-3./2.));
}
}
@@ -128,7 +128,7 @@
mean_delta[i] += delta[index];
}
}
- mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
+ mean_delta[i] *= (-1./sqrt(variance[i] + .000001f));
}
extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
@@ -167,7 +167,7 @@
__global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
{
- float scale = 1./(batch * spatial);
+ float scale = 1./(batch * spatial - 1);
int j,k;
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= filters) return;
@@ -288,7 +288,7 @@
for(i = 0; i < threads; ++i){
variance[filter] += local[i];
}
- variance[filter] /= spatial * batch;
+ variance[filter] /= (spatial * batch - 1);
}
}
diff --git a/src/cifar.c b/src/cifar.c
index f887877..de52bb8 100644
--- a/src/cifar.c
+++ b/src/cifar.c
@@ -33,7 +33,7 @@
float loss = train_network_sgd(net, train, 1);
if(avg_loss == -1) avg_loss = loss;
- avg_loss = avg_loss*.9 + loss*.1;
+ avg_loss = avg_loss*.95 + loss*.05;
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
if(*net.seen/N > epoch){
epoch = *net.seen/N;
@@ -57,6 +57,95 @@
free_data(train);
}
+void train_cifar_distill(char *cfgfile, char *weightfile)
+{
+ data_seed = time(0);
+ srand(time(0));
+ float avg_loss = -1;
+ char *base = basecfg(cfgfile);
+ printf("%s\n", base);
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+
+ char *backup_directory = "/home/pjreddie/backup/";
+ int classes = 10;
+ int N = 50000;
+
+ char **labels = get_labels("data/cifar/labels.txt");
+ int epoch = (*net.seen)/N;
+
+ data train = load_all_cifar10();
+ matrix soft = csv_to_matrix("results/ensemble.csv");
+
+ float weight = .9;
+ scale_matrix(soft, weight);
+ scale_matrix(train.y, 1. - weight);
+ matrix_add_matrix(soft, train.y);
+
+ while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
+ clock_t time=clock();
+
+ float loss = train_network_sgd(net, train, 1);
+ if(avg_loss == -1) avg_loss = loss;
+ avg_loss = avg_loss*.95 + loss*.05;
+ printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
+ if(*net.seen/N > epoch){
+ epoch = *net.seen/N;
+ char buff[256];
+ sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
+ save_weights(net, buff);
+ }
+ if(get_current_batch(net)%100 == 0){
+ char buff[256];
+ sprintf(buff, "%s/%s.backup",backup_directory,base);
+ save_weights(net, buff);
+ }
+ }
+ char buff[256];
+ sprintf(buff, "%s/%s.weights", backup_directory, base);
+ save_weights(net, buff);
+
+ free_network(net);
+ free_ptrs((void**)labels, classes);
+ free(base);
+ free_data(train);
+}
+
+void test_cifar_multi(char *filename, char *weightfile)
+{
+ network net = parse_network_cfg(filename);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+ srand(time(0));
+
+ float avg_acc = 0;
+ data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
+
+ int i;
+ for(i = 0; i < test.X.rows; ++i){
+ image im = float_to_image(32, 32, 3, test.X.vals[i]);
+
+ float pred[10] = {0};
+
+ float *p = network_predict(net, im.data);
+ axpy_cpu(10, 1, p, 1, pred, 1);
+ flip_image(im);
+ p = network_predict(net, im.data);
+ axpy_cpu(10, 1, p, 1, pred, 1);
+
+ int index = max_index(pred, 10);
+ int class = max_index(test.y.vals[i], 10);
+ if(index == class) avg_acc += 1;
+ free_image(im);
+ printf("%4d: %.2f%%\n", i, 100.*avg_acc/(i+1));
+ }
+}
+
void test_cifar(char *filename, char *weightfile)
{
network net = parse_network_cfg(filename);
@@ -79,6 +168,73 @@
free_data(test);
}
+void test_cifar_csv(char *filename, char *weightfile)
+{
+ network net = parse_network_cfg(filename);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ srand(time(0));
+
+ data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
+
+ matrix pred = network_predict_data(net, test);
+
+ int i;
+ for(i = 0; i < test.X.rows; ++i){
+ image im = float_to_image(32, 32, 3, test.X.vals[i]);
+ flip_image(im);
+ }
+ matrix pred2 = network_predict_data(net, test);
+ scale_matrix(pred, .5);
+ scale_matrix(pred2, .5);
+ matrix_add_matrix(pred2, pred);
+
+ matrix_to_csv(pred);
+ fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
+ free_data(test);
+}
+
+void test_cifar_csvtrain(char *filename, char *weightfile)
+{
+ network net = parse_network_cfg(filename);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ srand(time(0));
+
+ data test = load_all_cifar10();
+
+ matrix pred = network_predict_data(net, test);
+
+ int i;
+ for(i = 0; i < test.X.rows; ++i){
+ image im = float_to_image(32, 32, 3, test.X.vals[i]);
+ flip_image(im);
+ }
+ matrix pred2 = network_predict_data(net, test);
+ scale_matrix(pred, .5);
+ scale_matrix(pred2, .5);
+ matrix_add_matrix(pred2, pred);
+
+ matrix_to_csv(pred);
+ fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
+ free_data(test);
+}
+
+void eval_cifar_csv()
+{
+ data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
+
+ matrix pred = csv_to_matrix("results/combined.csv");
+ fprintf(stderr, "%d %d\n", pred.rows, pred.cols);
+
+ fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
+ free_data(test);
+ free_matrix(pred);
+}
+
+
void run_cifar(int argc, char **argv)
{
if(argc < 4){
@@ -89,7 +245,12 @@
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights);
+ else if(0==strcmp(argv[2], "distill")) train_cifar_distill(cfg, weights);
else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights);
+ else if(0==strcmp(argv[2], "multi")) test_cifar_multi(cfg, weights);
+ else if(0==strcmp(argv[2], "csv")) test_cifar_csv(cfg, weights);
+ else if(0==strcmp(argv[2], "csvtrain")) test_cifar_csvtrain(cfg, weights);
+ else if(0==strcmp(argv[2], "eval")) eval_cifar_csv();
}
diff --git a/src/classifier.c b/src/classifier.c
index fdbe534..2e974a5 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -3,6 +3,7 @@
#include "parser.h"
#include "option_list.h"
#include "blas.h"
+#include <sys/time.h>
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
@@ -239,8 +240,8 @@
}
int w = net.w;
int h = net.h;
- image im = load_image_color(paths[i], w, h);
int shift = 32;
+ image im = load_image_color(paths[i], w+shift, h+shift);
image images[10];
images[0] = crop_image(im, -shift, -shift, w, h);
images[1] = crop_image(im, shift, -shift, w, h);
@@ -299,6 +300,7 @@
float avg_topk = 0;
int *indexes = calloc(topk, sizeof(int));
+ int size = net.w;
for(i = 0; i < m; ++i){
int class = -1;
char *path = paths[i];
@@ -309,13 +311,15 @@
}
}
image im = load_image_color(paths[i], 0, 0);
- resize_network(&net, im.w, im.h);
+ image resized = resize_min(im, size);
+ resize_network(&net, resized.w, resized.h);
//show_image(im, "orig");
//show_image(crop, "cropped");
//cvWaitKey(0);
- float *pred = network_predict(net, im.data);
+ float *pred = network_predict(net, resized.data);
free_image(im);
+ free_image(resized);
top_k(pred, classes, topk, indexes);
if(indexes[0] == class) avg_acc += 1;
@@ -406,7 +410,7 @@
char **labels = get_labels(label_list);
list *plist = get_paths(valid_list);
- int scales[] = {224, 256, 384, 480, 512};
+ int scales[] = {192, 224, 288, 320, 352};
int nscales = sizeof(scales)/sizeof(scales[0]);
char **paths = (char **)list_to_array(plist);
@@ -429,16 +433,8 @@
float *pred = calloc(classes, sizeof(float));
image im = load_image_color(paths[i], 0, 0);
for(j = 0; j < nscales; ++j){
- int w, h;
- if(im.w < im.h){
- w = scales[j];
- h = (im.h*w)/im.w;
- } else {
- h = scales[j];
- w = (im.w * h) / im.h;
- }
- resize_network(&net, w, h);
- image r = resize_image(im, w, h);
+ image r = resize_min(im, scales[j]);
+ resize_network(&net, r.w, r.h);
float *p = network_predict(net, r.data);
axpy_cpu(classes, 1, p, 1, pred, 1);
flip_image(r);
@@ -577,6 +573,73 @@
}
+void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
+{
+#ifdef OPENCV
+ printf("Classifier Demo\n");
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+ list *options = read_data_cfg(datacfg);
+
+ srand(2222222);
+ CvCapture * cap;
+
+ if(filename){
+ cap = cvCaptureFromFile(filename);
+ }else{
+ cap = cvCaptureFromCAM(cam_index);
+ }
+
+ int top = option_find_int(options, "top", 1);
+
+ char *name_list = option_find_str(options, "names", 0);
+ char **names = get_labels(name_list);
+
+ int *indexes = calloc(top, sizeof(int));
+
+ if(!cap) error("Couldn't connect to webcam.\n");
+ cvNamedWindow("Classifier", CV_WINDOW_NORMAL);
+ cvResizeWindow("Classifier", 512, 512);
+ float fps = 0;
+ int i;
+
+ while(1){
+ struct timeval tval_before, tval_after, tval_result;
+ gettimeofday(&tval_before, NULL);
+
+ image in = get_image_from_stream(cap);
+ image in_s = resize_image(in, net.w, net.h);
+ show_image(in, "Classifier");
+
+ float *predictions = network_predict(net, in_s.data);
+ top_predictions(net, top, indexes);
+
+ printf("\033[2J");
+ printf("\033[1;1H");
+ printf("\nFPS:%.0f\n",fps);
+
+ for(i = 0; i < top; ++i){
+ int index = indexes[i];
+ printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
+ }
+
+ free_image(in_s);
+ free_image(in);
+
+ cvWaitKey(10);
+
+ gettimeofday(&tval_after, NULL);
+ timersub(&tval_after, &tval_before, &tval_result);
+ float curr = 1000000.f/((long int)tval_result.tv_usec);
+ fps = .9*fps + .1*curr;
+ }
+#endif
+}
+
+
void run_classifier(int argc, char **argv)
{
if(argc < 4){
@@ -584,6 +647,7 @@
return;
}
+ int cam_index = find_int_arg(argc, argv, "-c", 0);
char *data = argv[3];
char *cfg = argv[4];
char *weights = (argc > 5) ? argv[5] : 0;
@@ -592,6 +656,7 @@
int layer = layer_s ? atoi(layer_s) : -1;
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
+ else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
diff --git a/src/coco_demo.c b/src/coco_demo.c
index 4ba8eef..6f4d501 100644
--- a/src/coco_demo.c
+++ b/src/coco_demo.c
@@ -71,7 +71,7 @@
void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename)
{
demo_thresh = thresh;
- printf("YOLO demo\n");
+ printf("COCO demo\n");
net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
@@ -87,8 +87,8 @@
}
if(!cap) error("Couldn't connect to webcam.\n");
- cvNamedWindow("YOLO", CV_WINDOW_NORMAL);
- cvResizeWindow("YOLO", 512, 512);
+ cvNamedWindow("COCO", CV_WINDOW_NORMAL);
+ cvResizeWindow("COCO", 512, 512);
detection_layer l = net.layers[net.n-1];
int j;
@@ -127,8 +127,8 @@
gettimeofday(&tval_before, NULL);
if(pthread_create(&fetch_thread, 0, fetch_in_thread_coco, 0)) error("Thread creation failed");
if(pthread_create(&detect_thread, 0, detect_in_thread_coco, 0)) error("Thread creation failed");
- show_image(disp, "YOLO");
- save_image(disp, "YOLO");
+ show_image(disp, "COCO");
+ //save_image(disp, "COCO");
free_image(disp);
cvWaitKey(10);
pthread_join(fetch_thread, 0);
diff --git a/src/coco_kernels.cu b/src/coco_kernels.cu
deleted file mode 100644
index 0a5f840..0000000
--- a/src/coco_kernels.cu
+++ /dev/null
@@ -1,151 +0,0 @@
-#include "cuda_runtime.h"
-#include "curand.h"
-#include "cublas_v2.h"
-
-extern "C" {
-#include "network.h"
-#include "detection_layer.h"
-#include "cost_layer.h"
-#include "utils.h"
-#include "parser.h"
-#include "box.h"
-#include "image.h"
-#include <sys/time.h>
-}
-
-#ifdef OPENCV
-#include "opencv2/highgui/highgui.hpp"
-#include "opencv2/imgproc/imgproc.hpp"
-extern "C" image ipl_to_image(IplImage* src);
-extern "C" void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
-
-extern "C" char *coco_classes[];
-extern "C" image coco_labels[];
-
-static float **probs;
-static box *boxes;
-static network net;
-static image in ;
-static image in_s ;
-static image det ;
-static image det_s;
-static image disp ;
-static cv::VideoCapture cap;
-static float fps = 0;
-static float demo_thresh = 0;
-
-static const int frames = 3;
-static float *predictions[frames];
-static int demo_index = 0;
-static image images[frames];
-static float *avg;
-
-void *fetch_in_thread_coco(void *ptr)
-{
- cv::Mat frame_m;
- cap >> frame_m;
- IplImage frame = frame_m;
- in = ipl_to_image(&frame);
- rgbgr_image(in);
- in_s = resize_image(in, net.w, net.h);
- return 0;
-}
-
-void *detect_in_thread_coco(void *ptr)
-{
- float nms = .4;
-
- detection_layer l = net.layers[net.n-1];
- float *X = det_s.data;
- float *prediction = network_predict(net, X);
-
- memcpy(predictions[demo_index], prediction, l.outputs*sizeof(float));
- mean_arrays(predictions, frames, l.outputs, avg);
-
- free_image(det_s);
- convert_coco_detections(avg, l.classes, l.n, l.sqrt, l.side, 1, 1, demo_thresh, probs, boxes, 0);
- if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
- printf("\033[2J");
- printf("\033[1;1H");
- printf("\nFPS:%.0f\n",fps);
- printf("Objects:\n\n");
-
- images[demo_index] = det;
- det = images[(demo_index + frames/2 + 1)%frames];
- demo_index = (demo_index + 1)%frames;
-
- draw_detections(det, l.side*l.side*l.n, demo_thresh, boxes, probs, coco_classes, coco_labels, 80);
- return 0;
-}
-
-extern "C" void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename)
-{
- demo_thresh = thresh;
- printf("YOLO demo\n");
- net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- set_batch_network(&net, 1);
-
- srand(2222222);
-
- if(filename){
- cap.open(filename);
- }else{
- cap.open(cam_index);
- }
-
- if(!cap.isOpened()) error("Couldn't connect to webcam.\n");
-
- detection_layer l = net.layers[net.n-1];
- int j;
-
- avg = (float *) calloc(l.outputs, sizeof(float));
- for(j = 0; j < frames; ++j) predictions[j] = (float *) calloc(l.outputs, sizeof(float));
- for(j = 0; j < frames; ++j) images[j] = make_image(1,1,3);
-
- boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box));
- probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *));
- for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
-
- pthread_t fetch_thread;
- pthread_t detect_thread;
-
- fetch_in_thread_coco(0);
- det = in;
- det_s = in_s;
-
- fetch_in_thread_coco(0);
- detect_in_thread_coco(0);
- disp = det;
- det = in;
- det_s = in_s;
-
- while(1){
- struct timeval tval_before, tval_after, tval_result;
- gettimeofday(&tval_before, NULL);
- if(pthread_create(&fetch_thread, 0, fetch_in_thread_coco, 0)) error("Thread creation failed");
- if(pthread_create(&detect_thread, 0, detect_in_thread_coco, 0)) error("Thread creation failed");
- show_image(disp, "YOLO");
- free_image(disp);
- cvWaitKey(1);
- pthread_join(fetch_thread, 0);
- pthread_join(detect_thread, 0);
-
- disp = det;
- det = in;
- det_s = in_s;
-
- gettimeofday(&tval_after, NULL);
- timersub(&tval_after, &tval_before, &tval_result);
- float curr = 1000000.f/((long int)tval_result.tv_usec);
- fps = .9*fps + .1*curr;
- }
-}
-#else
-extern "C" void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index){
- fprintf(stderr, "YOLO-COCO demo needs OpenCV for webcam images.\n");
-}
-#endif
-
diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 4f474d6..85b92df 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -115,6 +115,46 @@
}
}
+__global__ void dot_kernel(float *output, float scale, int batch, int n, int size, float *delta)
+{
+ int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ int f1 = index / n;
+ int f2 = index % n;
+ if (f2 <= f1) return;
+
+ float sum = 0;
+ float norm1 = 0;
+ float norm2 = 0;
+ int b, i;
+ for(b = 0; b < batch; ++b){
+ for(i = 0; i < size; ++i){
+ int i1 = b * size * n + f1 * size + i;
+ int i2 = b * size * n + f2 * size + i;
+ sum += output[i1] * output[i2];
+ norm1 += output[i1] * output[i1];
+ norm2 += output[i2] * output[i2];
+ }
+ }
+ norm1 = sqrt(norm1);
+ norm2 = sqrt(norm2);
+ float norm = norm1 * norm2;
+ sum = sum / norm;
+ for(b = 0; b < batch; ++b){
+ for(i = 0; i < size; ++i){
+ int i1 = b * size * n + f1 * size + i;
+ int i2 = b * size * n + f2 * size + i;
+ delta[i1] += - scale * sum * output[i2] / norm;
+ delta[i2] += - scale * sum * output[i1] / norm;
+ }
+ }
+}
+
+void dot_error_gpu(layer l)
+{
+ dot_kernel<<<cuda_gridsize(l.n*l.n), BLOCK>>>(l.output_gpu, l.dot, l.batch, l.n, l.out_w * l.out_h, l.delta_gpu);
+ check_error(cudaPeekAtLastError());
+}
+
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
{
backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size);
@@ -123,9 +163,9 @@
void swap_binary(convolutional_layer *l)
{
- float *swap = l->filters_gpu;
- l->filters_gpu = l->binary_filters_gpu;
- l->binary_filters_gpu = swap;
+ float *swap = l->filters_gpu;
+ l->filters_gpu = l->binary_filters_gpu;
+ l->binary_filters_gpu = swap;
}
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
@@ -150,8 +190,8 @@
gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
}
- if(l.batch_normalize){
- if(state.train){
+ if (l.batch_normalize) {
+ if (state.train) {
fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.mean_gpu);
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.variance_gpu);
@@ -172,6 +212,7 @@
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n);
activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation);
+ if(l.dot > 0) dot_error_gpu(l);
if(l.binary) swap_binary(&l);
}
diff --git a/src/darknet.c b/src/darknet.c
index 5722729..0865c61 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -24,6 +24,7 @@
extern void run_vid_rnn(int argc, char **argv);
extern void run_tag(int argc, char **argv);
extern void run_cifar(int argc, char **argv);
+extern void run_go(int argc, char **argv);
void change_rate(char *filename, float scale, float add)
{
@@ -171,13 +172,13 @@
{
gpu_index = -1;
network net = parse_network_cfg(cfgfile);
- if(weightfile){
+ if (weightfile) {
load_weights(&net, weightfile);
}
int i;
- for(i = 0; i < net.n; ++i){
+ for (i = 0; i < net.n; ++i) {
layer l = net.layers[i];
- if(l.type == CONVOLUTIONAL){
+ if (l.type == CONVOLUTIONAL && l.batch_normalize) {
denormalize_convolutional_layer(l);
net.layers[i].batch_normalize=0;
}
@@ -228,6 +229,8 @@
run_yolo(argc, argv);
} else if (0 == strcmp(argv[1], "cifar")){
run_cifar(argc, argv);
+ } else if (0 == strcmp(argv[1], "go")){
+ run_go(argc, argv);
} else if (0 == strcmp(argv[1], "rnn")){
run_char_rnn(argc, argv);
} else if (0 == strcmp(argv[1], "vid")){
diff --git a/src/data.c b/src/data.c
index c429a73..88e3eab 100644
--- a/src/data.c
+++ b/src/data.c
@@ -95,6 +95,11 @@
image crop = random_crop_image(im, min, max, size);
int flip = rand_r(&data_seed)%2;
if (flip) flip_image(crop);
+ /*
+ show_image(im, "orig");
+ show_image(crop, "crop");
+ cvWaitKey(0);
+ */
free_image(im);
X.vals[i] = crop.data;
X.cols = crop.h*crop.w*crop.c;
@@ -863,6 +868,17 @@
}
}
+void smooth_data(data d)
+{
+ int i, j;
+ int scale = 1. / d.y.cols;
+ int eps = .1;
+ for(i = 0; i < d.y.rows; ++i){
+ for(j = 0; j < d.y.cols; ++j){
+ d.y.vals[i][j] = eps * scale + (1-eps) * d.y.vals[i][j];
+ }
+ }
+}
data load_all_cifar10()
{
@@ -894,9 +910,55 @@
//normalize_data_rows(d);
//translate_data_rows(d, -128);
scale_data_rows(d, 1./255);
+ // smooth_data(d);
return d;
}
+data load_go(char *filename)
+{
+ FILE *fp = fopen(filename, "rb");
+ matrix X = make_matrix(128, 361);
+ matrix y = make_matrix(128, 361);
+ int row, col;
+
+ if(!fp) file_error(filename);
+ char *label;
+ int count = 0;
+ while((label = fgetl(fp))){
+ int i;
+ if(count == X.rows){
+ X = resize_matrix(X, count*2);
+ y = resize_matrix(y, count*2);
+ }
+ sscanf(label, "%d %d", &row, &col);
+ char *board = fgetl(fp);
+
+ int index = row*19 + col;
+ y.vals[count][index] = 1;
+
+ for(i = 0; i < 19*19; ++i){
+ float val = 0;
+ if(board[i] == '1') val = 1;
+ else if(board[i] == '2') val = -1;
+ X.vals[count][i] = val;
+ }
+ ++count;
+ }
+ X = resize_matrix(X, count);
+ y = resize_matrix(y, count);
+
+ data d;
+ d.shallow = 0;
+ d.X = X;
+ d.y = y;
+
+
+ fclose(fp);
+
+ return d;
+}
+
+
void randomize_data(data d)
{
int i;
@@ -936,6 +998,29 @@
}
}
+data get_random_data(data d, int num)
+{
+ data r = {0};
+ r.shallow = 1;
+
+ r.X.rows = num;
+ r.y.rows = num;
+
+ r.X.cols = d.X.cols;
+ r.y.cols = d.y.cols;
+
+ r.X.vals = calloc(num, sizeof(float *));
+ r.y.vals = calloc(num, sizeof(float *));
+
+ int i;
+ for(i = 0; i < num; ++i){
+ int index = rand()%d.X.rows;
+ r.X.vals[i] = d.X.vals[index];
+ r.y.vals[i] = d.y.vals[index];
+ }
+ return r;
+}
+
data *split_data(data d, int part, int total)
{
data *split = calloc(2, sizeof(data));
diff --git a/src/data.h b/src/data.h
index a3036a8..f928ade 100644
--- a/src/data.h
+++ b/src/data.h
@@ -70,6 +70,7 @@
data load_data_detection(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background);
data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size);
data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
+data load_go(char *filename);
box_label *read_boxes(char *filename, int *n);
data load_cifar10_data(char *filename);
@@ -80,6 +81,7 @@
list *get_paths(char *filename);
char **get_labels(char *filename);
void get_random_batch(data d, int n, float *X, float *y);
+data get_random_data(data d, int num);
void get_next_batch(data d, int n, int offset, float *X, float *y);
data load_categorical_data_csv(char *filename, int target, int k);
void normalize_data_rows(data d);
diff --git a/src/go.c b/src/go.c
new file mode 100644
index 0000000..a7da283
--- /dev/null
+++ b/src/go.c
@@ -0,0 +1,249 @@
+#include "network.h"
+#include "utils.h"
+#include "parser.h"
+#include "option_list.h"
+#include "blas.h"
+
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
+
+void train_go(char *cfgfile, char *weightfile)
+{
+ data_seed = time(0);
+ srand(time(0));
+ float avg_loss = -1;
+ char *base = basecfg(cfgfile);
+ printf("%s\n", base);
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+
+ char *backup_directory = "/home/pjreddie/backup/";
+
+ data train = load_go("/home/pjreddie/backup/go.train");
+ int N = train.X.rows;
+ int epoch = (*net.seen)/N;
+ while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
+ clock_t time=clock();
+
+ data batch = get_random_data(train, net.batch);
+ int i;
+ for(i = 0; i < batch.X.rows; ++i){
+ int flip = rand()%2;
+ int rotate = rand()%4;
+ image in = float_to_image(19, 19, 1, batch.X.vals[i]);
+ image out = float_to_image(19, 19, 1, batch.y.vals[i]);
+ //show_image_normalized(in, "in");
+ //show_image_normalized(out, "out");
+ if(flip){
+ flip_image(in);
+ flip_image(out);
+ }
+ rotate_image_cw(in, rotate);
+ rotate_image_cw(out, rotate);
+ //show_image_normalized(in, "in2");
+ //show_image_normalized(out, "out2");
+ //cvWaitKey(0);
+ }
+ float loss = train_network(net, batch);
+ free_data(batch);
+ if(avg_loss == -1) avg_loss = loss;
+ avg_loss = avg_loss*.95 + loss*.05;
+ printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
+ if(*net.seen/N > epoch){
+ epoch = *net.seen/N;
+ char buff[256];
+ sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
+ save_weights(net, buff);
+ }
+ if(get_current_batch(net)%100 == 0){
+ char buff[256];
+ sprintf(buff, "%s/%s.backup",backup_directory,base);
+ save_weights(net, buff);
+ }
+ }
+ char buff[256];
+ sprintf(buff, "%s/%s.weights", backup_directory, base);
+ save_weights(net, buff);
+
+ free_network(net);
+ free(base);
+ free_data(train);
+}
+
+void propagate_liberty(float *board, int *lib, int *visited, int row, int col, int num, int side)
+{
+ if (!num) return;
+ if (row < 0 || row > 18 || col < 0 || col > 18) return;
+ int index = row*19 + col;
+ if (board[index] != side) return;
+ if (visited[index]) return;
+ visited[index] = 1;
+ lib[index] += num;
+ propagate_liberty(board, lib, visited, row+1, col, num, side);
+ propagate_liberty(board, lib, visited, row-1, col, num, side);
+ propagate_liberty(board, lib, visited, row, col+1, num, side);
+ propagate_liberty(board, lib, visited, row, col-1, num, side);
+}
+
+int *calculate_liberties(float *board)
+{
+ int *lib = calloc(19*19, sizeof(int));
+ int visited[361];
+ int i, j;
+ for(j = 0; j < 19; ++j){
+ for(i = 0; i < 19; ++i){
+ memset(visited, 0, 19*19*sizeof(int));
+ int index = j*19 + i;
+ if(board[index]){
+ printf("%d %d\n", j, i);
+ int side = board[index];
+ int num = 0;
+ if (i > 0 && board[j*19 + i - 1] == 0) ++num;
+ if (i < 18 && board[j*19 + i + 1] == 0) ++num;
+ if (j > 0 && board[j*19 + i - 19] == 0) ++num;
+ if (j < 18 && board[j*19 + i + 19] == 0) ++num;
+ propagate_liberty(board, lib, visited, j, i, num, side);
+ }
+ }
+ }
+ return lib;
+}
+
+void update_board(float *board)
+{
+ int i;
+ int *l = calculate_liberties(board);
+ for(i = 0; i < 19*19; ++i){
+ if (board[i] && !l[i]) board[i] = 0;
+ }
+ free(l);
+}
+
+void print_board(float *board)
+{
+ int i,j;
+ printf("\n\n");
+ printf(" ");
+ for(i = 0; i < 19; ++i){
+ printf("%c ", 'A' + i + 1*(i > 7));
+ }
+ printf("\n");
+ for(j = 0; j < 19; ++j){
+ printf("%2d ", 19-j);
+ for(i = 0; i < 19; ++i){
+ int index = j*19 + i;
+ if(board[index] > 0) printf("\u25C9 ");
+ else if(board[index] < 0) printf("\u25EF ");
+ else printf(" ");
+ }
+ printf("\n");
+ }
+}
+
+void flip_board(float *board)
+{
+ int i;
+ for(i = 0; i < 19*19; ++i){
+ board[i] = -board[i];
+ }
+}
+
+void test_go(char *filename, char *weightfile)
+{
+ network net = parse_network_cfg(filename);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ srand(time(0));
+ set_batch_network(&net, 1);
+ float *board = calloc(19*19, sizeof(float));
+ float *move = calloc(19*19, sizeof(float));
+ image bim = float_to_image(19, 19, 1, board);
+ while(1){
+ float *output = network_predict(net, board);
+ copy_cpu(19*19, output, 1, move, 1);
+ int i;
+ for(i = 1; i < 8; ++i){
+ rotate_image_cw(bim, i);
+ if(i >= 4) flip_image(bim);
+
+ float *output = network_predict(net, board);
+ image oim = float_to_image(19, 19, 1, output);
+
+ if(i >= 4) flip_image(oim);
+ rotate_image_cw(oim, -i);
+
+ int index = max_index(output, 19*19);
+ int row = index / 19;
+ int col = index % 19;
+ printf("Suggested: %c %d, %.2f%%\n", col + 'A' + 1*(col > 7), 19 - row, output[index]*100);
+
+ axpy_cpu(19*19, 1, output, 1, move, 1);
+
+ if(i >= 4) flip_image(bim);
+ rotate_image_cw(bim, -i);
+ }
+ scal_cpu(19*19, 1./8., move, 1);
+ for(i = 0; i < 19*19; ++i){
+ if(board[i]) move[i] = 0;
+ }
+
+ int indexes[3];
+ int row, col;
+ top_k(move, 19*19, 3, indexes);
+ print_board(board);
+ for(i = 0; i < 3; ++i){
+ int index = indexes[i];
+ row = index / 19;
+ col = index % 19;
+ printf("Suggested: %c %d, %.2f%%\n", col + 'A' + 1*(col > 7), 19 - row, move[index]*100);
+ }
+ int index = indexes[0];
+ row = index / 19;
+ col = index % 19;
+
+ printf("\u25C9 Enter move: ");
+ char c;
+ char *line = fgetl(stdin);
+ int num = sscanf(line, "%c %d", &c, &row);
+ if (c < 'A' || c > 'T'){
+ if (c == 'p'){
+ board[row*19 + col] = 1;
+ }else{
+ char g;
+ num = sscanf(line, "%c %c %d", &g, &c, &row);
+ row = 19 - row;
+ col = c - 'A';
+ if (col > 7) col -= 1;
+ board[row*19 + col] = 0;
+ }
+ } else {
+ row = 19 - row;
+ col = c - 'A';
+ if (col > 7) col -= 1;
+ if(num == 2) board[row*19 + col] = 1;
+ }
+ update_board(board);
+ flip_board(board);
+ }
+
+}
+
+void run_go(int argc, char **argv)
+{
+ if(argc < 4){
+ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+ return;
+ }
+
+ char *cfg = argv[3];
+ char *weights = (argc > 4) ? argv[4] : 0;
+ if(0==strcmp(argv[2], "train")) train_go(cfg, weights);
+ else if(0==strcmp(argv[2], "test")) test_go(cfg, weights);
+}
+
+
diff --git a/src/image.c b/src/image.c
index e2cf97f..0d714fe 100644
--- a/src/image.c
+++ b/src/image.c
@@ -137,6 +137,42 @@
}
}
+void transpose_image(image im)
+{
+ assert(im.w == im.h);
+ int n, m;
+ int c;
+ for(c = 0; c < im.c; ++c){
+ for(n = 0; n < im.w-1; ++n){
+ for(m = n + 1; m < im.w; ++m){
+ float swap = im.data[m + im.w*(n + im.h*c)];
+ im.data[m + im.w*(n + im.h*c)] = im.data[n + im.w*(m + im.h*c)];
+ im.data[n + im.w*(m + im.h*c)] = swap;
+ }
+ }
+ }
+}
+
+void rotate_image_cw(image im, int times)
+{
+ assert(im.w == im.h);
+ times = (times + 400) % 4;
+ int i, x, y, c;
+ int n = im.w;
+ for(i = 0; i < times; ++i){
+ for(c = 0; c < im.c; ++c){
+ for(x = 0; x < n/2; ++x){
+ for(y = 0; y < (n-1)/2 + 1; ++y){
+ float temp = im.data[y + im.w*(x + im.h*c)];
+ im.data[y + im.w*(x + im.h*c)] = im.data[n-1-x + im.w*(y + im.h*c)];
+ im.data[n-1-x + im.w*(y + im.h*c)] = im.data[n-1-y + im.w*(n-1-x + im.h*c)];
+ im.data[n-1-y + im.w*(n-1-x + im.h*c)] = im.data[x + im.w*(n-1-y + im.h*c)];
+ im.data[x + im.w*(n-1-y + im.h*c)] = temp;
+ }
+ }
+ }
+ }
+}
void flip_image(image a)
{
@@ -294,739 +330,747 @@
}
cvShowImage(buff, disp);
cvReleaseImage(&disp);
-}
+ }
#endif
-void show_image(image p, const char *name)
-{
+ void show_image(image p, const char *name)
+ {
#ifdef OPENCV
- show_image_cv(p, name);
+ show_image_cv(p, name);
#else
- fprintf(stderr, "Not compiled with OpenCV, saving to %s.png instead\n", name);
- save_image(p, name);
+ fprintf(stderr, "Not compiled with OpenCV, saving to %s.png instead\n", name);
+ save_image(p, name);
#endif
-}
-
-void save_image(image im, const char *name)
-{
- char buff[256];
- //sprintf(buff, "%s (%d)", name, windows);
- sprintf(buff, "%s.png", name);
- unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char));
- int i,k;
- for(k = 0; k < im.c; ++k){
- for(i = 0; i < im.w*im.h; ++i){
- data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]);
- }
}
- int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c);
- free(data);
- if(!success) fprintf(stderr, "Failed to write image %s\n", buff);
-}
+
+ void save_image(image im, const char *name)
+ {
+ char buff[256];
+ //sprintf(buff, "%s (%d)", name, windows);
+ sprintf(buff, "%s.png", name);
+ unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char));
+ int i,k;
+ for(k = 0; k < im.c; ++k){
+ for(i = 0; i < im.w*im.h; ++i){
+ data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]);
+ }
+ }
+ int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c);
+ free(data);
+ if(!success) fprintf(stderr, "Failed to write image %s\n", buff);
+ }
#ifdef OPENCV
-image get_image_from_stream(CvCapture *cap)
-{
- IplImage* src = cvQueryFrame(cap);
- image im = ipl_to_image(src);
- rgbgr_image(im);
- return im;
-}
+ image get_image_from_stream(CvCapture *cap)
+ {
+ IplImage* src = cvQueryFrame(cap);
+ image im = ipl_to_image(src);
+ rgbgr_image(im);
+ return im;
+ }
#endif
#ifdef OPENCV
-void save_image_jpg(image p, char *name)
-{
- image copy = copy_image(p);
- rgbgr_image(copy);
- int x,y,k;
+ void save_image_jpg(image p, char *name)
+ {
+ image copy = copy_image(p);
+ rgbgr_image(copy);
+ int x,y,k;
- char buff[256];
- sprintf(buff, "%s.jpg", name);
+ char buff[256];
+ sprintf(buff, "%s.jpg", name);
- IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
- int step = disp->widthStep;
- for(y = 0; y < p.h; ++y){
- for(x = 0; x < p.w; ++x){
- for(k= 0; k < p.c; ++k){
- disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255);
+ IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
+ int step = disp->widthStep;
+ for(y = 0; y < p.h; ++y){
+ for(x = 0; x < p.w; ++x){
+ for(k= 0; k < p.c; ++k){
+ disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255);
+ }
}
}
+ cvSaveImage(buff, disp,0);
+ cvReleaseImage(&disp);
+ free_image(copy);
}
- cvSaveImage(buff, disp,0);
- cvReleaseImage(&disp);
- free_image(copy);
-}
#endif
-void show_image_layers(image p, char *name)
-{
- int i;
- char buff[256];
- for(i = 0; i < p.c; ++i){
- sprintf(buff, "%s - Layer %d", name, i);
- image layer = get_image_layer(p, i);
- show_image(layer, buff);
- free_image(layer);
- }
-}
-
-void show_image_collapsed(image p, char *name)
-{
- image c = collapse_image_layers(p, 1);
- show_image(c, name);
- free_image(c);
-}
-
-image make_empty_image(int w, int h, int c)
-{
- image out;
- out.data = 0;
- out.h = h;
- out.w = w;
- out.c = c;
- return out;
-}
-
-image make_image(int w, int h, int c)
-{
- image out = make_empty_image(w,h,c);
- out.data = calloc(h*w*c, sizeof(float));
- return out;
-}
-
-image make_random_image(int w, int h, int c)
-{
- image out = make_empty_image(w,h,c);
- out.data = calloc(h*w*c, sizeof(float));
- int i;
- for(i = 0; i < w*h*c; ++i){
- out.data[i] = (rand_normal() * .25) + .5;
- }
- return out;
-}
-
-image float_to_image(int w, int h, int c, float *data)
-{
- image out = make_empty_image(w,h,c);
- out.data = data;
- return out;
-}
-
-image rotate_image(image im, float rad)
-{
- int x, y, c;
- float cx = im.w/2.;
- float cy = im.h/2.;
- image rot = make_image(im.w, im.h, im.c);
- for(c = 0; c < im.c; ++c){
- for(y = 0; y < im.h; ++y){
- for(x = 0; x < im.w; ++x){
- float rx = cos(rad)*(x-cx) - sin(rad)*(y-cy) + cx;
- float ry = sin(rad)*(x-cx) + cos(rad)*(y-cy) + cy;
- float val = bilinear_interpolate(im, rx, ry, c);
- set_pixel(rot, x, y, c, val);
- }
+ void show_image_layers(image p, char *name)
+ {
+ int i;
+ char buff[256];
+ for(i = 0; i < p.c; ++i){
+ sprintf(buff, "%s - Layer %d", name, i);
+ image layer = get_image_layer(p, i);
+ show_image(layer, buff);
+ free_image(layer);
}
}
- return rot;
-}
-void translate_image(image m, float s)
-{
- int i;
- for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s;
-}
+ void show_image_collapsed(image p, char *name)
+ {
+ image c = collapse_image_layers(p, 1);
+ show_image(c, name);
+ free_image(c);
+ }
-void scale_image(image m, float s)
-{
- int i;
- for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s;
-}
+ image make_empty_image(int w, int h, int c)
+ {
+ image out;
+ out.data = 0;
+ out.h = h;
+ out.w = w;
+ out.c = c;
+ return out;
+ }
-image crop_image(image im, int dx, int dy, int w, int h)
-{
- image cropped = make_image(w, h, im.c);
- int i, j, k;
- for(k = 0; k < im.c; ++k){
- for(j = 0; j < h; ++j){
- for(i = 0; i < w; ++i){
- int r = j + dy;
- int c = i + dx;
- float val = 0;
- if (r >= 0 && r < im.h && c >= 0 && c < im.w) {
- val = get_pixel(im, c, r, k);
- }
- set_pixel(cropped, i, j, k, val);
- }
+ image make_image(int w, int h, int c)
+ {
+ image out = make_empty_image(w,h,c);
+ out.data = calloc(h*w*c, sizeof(float));
+ return out;
+ }
+
+ image make_random_image(int w, int h, int c)
+ {
+ image out = make_empty_image(w,h,c);
+ out.data = calloc(h*w*c, sizeof(float));
+ int i;
+ for(i = 0; i < w*h*c; ++i){
+ out.data[i] = (rand_normal() * .25) + .5;
}
+ return out;
}
- return cropped;
-}
-image resize_min(image im, int min)
-{
- int w = im.w;
- int h = im.h;
- if(w < h){
- h = (h * min) / w;
- w = min;
- } else {
- w = (w * min) / h;
- h = min;
+ image float_to_image(int w, int h, int c, float *data)
+ {
+ image out = make_empty_image(w,h,c);
+ out.data = data;
+ return out;
}
- image resized = resize_image(im, w, h);
- return resized;
-}
-image random_crop_image(image im, int low, int high, int size)
-{
- int r = rand_int(low, high);
- image resized = resize_min(im, r);
- int dx = rand_int(0, resized.w - size);
- int dy = rand_int(0, resized.h - size);
- image crop = crop_image(resized, dx, dy, size, size);
-
- /*
- show_image(im, "orig");
- show_image(crop, "cropped");
- cvWaitKey(0);
- */
-
- free_image(resized);
- return crop;
-}
-
-float three_way_max(float a, float b, float c)
-{
- return (a > b) ? ( (a > c) ? a : c) : ( (b > c) ? b : c) ;
-}
-
-float three_way_min(float a, float b, float c)
-{
- return (a < b) ? ( (a < c) ? a : c) : ( (b < c) ? b : c) ;
-}
-
-// http://www.cs.rit.edu/~ncs/color/t_convert.html
-void rgb_to_hsv(image im)
-{
- assert(im.c == 3);
- int i, j;
- float r, g, b;
- float h, s, v;
- for(j = 0; j < im.h; ++j){
- for(i = 0; i < im.w; ++i){
- r = get_pixel(im, i , j, 0);
- g = get_pixel(im, i , j, 1);
- b = get_pixel(im, i , j, 2);
- float max = three_way_max(r,g,b);
- float min = three_way_min(r,g,b);
- float delta = max - min;
- v = max;
- if(max == 0){
- s = 0;
- h = -1;
- }else{
- s = delta/max;
- if(r == max){
- h = (g - b) / delta;
- } else if (g == max) {
- h = 2 + (b - r) / delta;
- } else {
- h = 4 + (r - g) / delta;
- }
- if (h < 0) h += 6;
- }
- set_pixel(im, i, j, 0, h);
- set_pixel(im, i, j, 1, s);
- set_pixel(im, i, j, 2, v);
- }
- }
-}
-
-void hsv_to_rgb(image im)
-{
- assert(im.c == 3);
- int i, j;
- float r, g, b;
- float h, s, v;
- float f, p, q, t;
- for(j = 0; j < im.h; ++j){
- for(i = 0; i < im.w; ++i){
- h = get_pixel(im, i , j, 0);
- s = get_pixel(im, i , j, 1);
- v = get_pixel(im, i , j, 2);
- if (s == 0) {
- r = g = b = v;
- } else {
- int index = floor(h);
- f = h - index;
- p = v*(1-s);
- q = v*(1-s*f);
- t = v*(1-s*(1-f));
- if(index == 0){
- r = v; g = t; b = p;
- } else if(index == 1){
- r = q; g = v; b = p;
- } else if(index == 2){
- r = p; g = v; b = t;
- } else if(index == 3){
- r = p; g = q; b = v;
- } else if(index == 4){
- r = t; g = p; b = v;
- } else {
- r = v; g = p; b = q;
+ image rotate_image(image im, float rad)
+ {
+ int x, y, c;
+ float cx = im.w/2.;
+ float cy = im.h/2.;
+ image rot = make_image(im.w, im.h, im.c);
+ for(c = 0; c < im.c; ++c){
+ for(y = 0; y < im.h; ++y){
+ for(x = 0; x < im.w; ++x){
+ float rx = cos(rad)*(x-cx) - sin(rad)*(y-cy) + cx;
+ float ry = sin(rad)*(x-cx) + cos(rad)*(y-cy) + cy;
+ float val = bilinear_interpolate(im, rx, ry, c);
+ set_pixel(rot, x, y, c, val);
}
}
- set_pixel(im, i, j, 0, r);
- set_pixel(im, i, j, 1, g);
- set_pixel(im, i, j, 2, b);
}
+ return rot;
}
-}
-image grayscale_image(image im)
-{
- assert(im.c == 3);
- int i, j, k;
- image gray = make_image(im.w, im.h, 1);
- float scale[] = {0.587, 0.299, 0.114};
- for(k = 0; k < im.c; ++k){
+ void translate_image(image m, float s)
+ {
+ int i;
+ for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s;
+ }
+
+ void scale_image(image m, float s)
+ {
+ int i;
+ for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s;
+ }
+
+ image crop_image(image im, int dx, int dy, int w, int h)
+ {
+ image cropped = make_image(w, h, im.c);
+ int i, j, k;
+ for(k = 0; k < im.c; ++k){
+ for(j = 0; j < h; ++j){
+ for(i = 0; i < w; ++i){
+ int r = j + dy;
+ int c = i + dx;
+ float val = 0;
+ if (r >= 0 && r < im.h && c >= 0 && c < im.w) {
+ val = get_pixel(im, c, r, k);
+ }
+ set_pixel(cropped, i, j, k, val);
+ }
+ }
+ }
+ return cropped;
+ }
+
+ image resize_min(image im, int min)
+ {
+ int w = im.w;
+ int h = im.h;
+ if(w < h){
+ h = (h * min) / w;
+ w = min;
+ } else {
+ w = (w * min) / h;
+ h = min;
+ }
+ image resized = resize_image(im, w, h);
+ return resized;
+ }
+
+ image random_crop_image(image im, int low, int high, int size)
+ {
+ int r = rand_int(low, high);
+ image resized = resize_min(im, r);
+ int dx = rand_int(0, resized.w - size);
+ int dy = rand_int(0, resized.h - size);
+ image crop = crop_image(resized, dx, dy, size, size);
+
+ /*
+ show_image(im, "orig");
+ show_image(crop, "cropped");
+ cvWaitKey(0);
+ */
+
+ free_image(resized);
+ return crop;
+ }
+
+ float three_way_max(float a, float b, float c)
+ {
+ return (a > b) ? ( (a > c) ? a : c) : ( (b > c) ? b : c) ;
+ }
+
+ float three_way_min(float a, float b, float c)
+ {
+ return (a < b) ? ( (a < c) ? a : c) : ( (b < c) ? b : c) ;
+ }
+
+ // http://www.cs.rit.edu/~ncs/color/t_convert.html
+ void rgb_to_hsv(image im)
+ {
+ assert(im.c == 3);
+ int i, j;
+ float r, g, b;
+ float h, s, v;
for(j = 0; j < im.h; ++j){
for(i = 0; i < im.w; ++i){
- gray.data[i+im.w*j] += scale[k]*get_pixel(im, i, j, k);
- }
- }
- }
- return gray;
-}
-
-image threshold_image(image im, float thresh)
-{
- int i;
- image t = make_image(im.w, im.h, im.c);
- for(i = 0; i < im.w*im.h*im.c; ++i){
- t.data[i] = im.data[i]>thresh ? 1 : 0;
- }
- return t;
-}
-
-image blend_image(image fore, image back, float alpha)
-{
- assert(fore.w == back.w && fore.h == back.h && fore.c == back.c);
- image blend = make_image(fore.w, fore.h, fore.c);
- int i, j, k;
- for(k = 0; k < fore.c; ++k){
- for(j = 0; j < fore.h; ++j){
- for(i = 0; i < fore.w; ++i){
- float val = alpha * get_pixel(fore, i, j, k) +
- (1 - alpha)* get_pixel(back, i, j, k);
- set_pixel(blend, i, j, k, val);
- }
- }
- }
- return blend;
-}
-
-void scale_image_channel(image im, int c, float v)
-{
- int i, j;
- for(j = 0; j < im.h; ++j){
- for(i = 0; i < im.w; ++i){
- float pix = get_pixel(im, i, j, c);
- pix = pix*v;
- set_pixel(im, i, j, c, pix);
- }
- }
-}
-
-void saturate_image(image im, float sat)
-{
- rgb_to_hsv(im);
- scale_image_channel(im, 1, sat);
- hsv_to_rgb(im);
- constrain_image(im);
-}
-
-void exposure_image(image im, float sat)
-{
- rgb_to_hsv(im);
- scale_image_channel(im, 2, sat);
- hsv_to_rgb(im);
- constrain_image(im);
-}
-
-void saturate_exposure_image(image im, float sat, float exposure)
-{
- rgb_to_hsv(im);
- scale_image_channel(im, 1, sat);
- scale_image_channel(im, 2, exposure);
- hsv_to_rgb(im);
- constrain_image(im);
-}
-
-/*
- image saturate_image(image im, float sat)
- {
- image gray = grayscale_image(im);
- image blend = blend_image(im, gray, sat);
- free_image(gray);
- constrain_image(blend);
- return blend;
- }
-
- image brightness_image(image im, float b)
- {
- image bright = make_image(im.w, im.h, im.c);
- return bright;
- }
- */
-
-float bilinear_interpolate(image im, float x, float y, int c)
-{
- int ix = (int) floorf(x);
- int iy = (int) floorf(y);
-
- float dx = x - ix;
- float dy = y - iy;
-
- float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) +
- dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) +
- (1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) +
- dy * dx * get_pixel_extend(im, ix+1, iy+1, c);
- return val;
-}
-
-image resize_image(image im, int w, int h)
-{
- image resized = make_image(w, h, im.c);
- image part = make_image(w, im.h, im.c);
- int r, c, k;
- float w_scale = (float)(im.w - 1) / (w - 1);
- float h_scale = (float)(im.h - 1) / (h - 1);
- for(k = 0; k < im.c; ++k){
- for(r = 0; r < im.h; ++r){
- for(c = 0; c < w; ++c){
- float val = 0;
- if(c == w-1 || im.w == 1){
- val = get_pixel(im, im.w-1, r, k);
- } else {
- float sx = c*w_scale;
- int ix = (int) sx;
- float dx = sx - ix;
- val = (1 - dx) * get_pixel(im, ix, r, k) + dx * get_pixel(im, ix+1, r, k);
+ r = get_pixel(im, i , j, 0);
+ g = get_pixel(im, i , j, 1);
+ b = get_pixel(im, i , j, 2);
+ float max = three_way_max(r,g,b);
+ float min = three_way_min(r,g,b);
+ float delta = max - min;
+ v = max;
+ if(max == 0){
+ s = 0;
+ h = -1;
+ }else{
+ s = delta/max;
+ if(r == max){
+ h = (g - b) / delta;
+ } else if (g == max) {
+ h = 2 + (b - r) / delta;
+ } else {
+ h = 4 + (r - g) / delta;
+ }
+ if (h < 0) h += 6;
}
- set_pixel(part, c, r, k, val);
- }
- }
- }
- for(k = 0; k < im.c; ++k){
- for(r = 0; r < h; ++r){
- float sy = r*h_scale;
- int iy = (int) sy;
- float dy = sy - iy;
- for(c = 0; c < w; ++c){
- float val = (1-dy) * get_pixel(part, c, iy, k);
- set_pixel(resized, c, r, k, val);
- }
- if(r == h-1 || im.h == 1) continue;
- for(c = 0; c < w; ++c){
- float val = dy * get_pixel(part, c, iy+1, k);
- add_pixel(resized, c, r, k, val);
+ set_pixel(im, i, j, 0, h);
+ set_pixel(im, i, j, 1, s);
+ set_pixel(im, i, j, 2, v);
}
}
}
- free_image(part);
- return resized;
-}
+ void hsv_to_rgb(image im)
+ {
+ assert(im.c == 3);
+ int i, j;
+ float r, g, b;
+ float h, s, v;
+ float f, p, q, t;
+ for(j = 0; j < im.h; ++j){
+ for(i = 0; i < im.w; ++i){
+ h = get_pixel(im, i , j, 0);
+ s = get_pixel(im, i , j, 1);
+ v = get_pixel(im, i , j, 2);
+ if (s == 0) {
+ r = g = b = v;
+ } else {
+ int index = floor(h);
+ f = h - index;
+ p = v*(1-s);
+ q = v*(1-s*f);
+ t = v*(1-s*(1-f));
+ if(index == 0){
+ r = v; g = t; b = p;
+ } else if(index == 1){
+ r = q; g = v; b = p;
+ } else if(index == 2){
+ r = p; g = v; b = t;
+ } else if(index == 3){
+ r = p; g = q; b = v;
+ } else if(index == 4){
+ r = t; g = p; b = v;
+ } else {
+ r = v; g = p; b = q;
+ }
+ }
+ set_pixel(im, i, j, 0, r);
+ set_pixel(im, i, j, 1, g);
+ set_pixel(im, i, j, 2, b);
+ }
+ }
+ }
+
+ image grayscale_image(image im)
+ {
+ assert(im.c == 3);
+ int i, j, k;
+ image gray = make_image(im.w, im.h, 1);
+ float scale[] = {0.587, 0.299, 0.114};
+ for(k = 0; k < im.c; ++k){
+ for(j = 0; j < im.h; ++j){
+ for(i = 0; i < im.w; ++i){
+ gray.data[i+im.w*j] += scale[k]*get_pixel(im, i, j, k);
+ }
+ }
+ }
+ return gray;
+ }
+
+ image threshold_image(image im, float thresh)
+ {
+ int i;
+ image t = make_image(im.w, im.h, im.c);
+ for(i = 0; i < im.w*im.h*im.c; ++i){
+ t.data[i] = im.data[i]>thresh ? 1 : 0;
+ }
+ return t;
+ }
+
+ image blend_image(image fore, image back, float alpha)
+ {
+ assert(fore.w == back.w && fore.h == back.h && fore.c == back.c);
+ image blend = make_image(fore.w, fore.h, fore.c);
+ int i, j, k;
+ for(k = 0; k < fore.c; ++k){
+ for(j = 0; j < fore.h; ++j){
+ for(i = 0; i < fore.w; ++i){
+ float val = alpha * get_pixel(fore, i, j, k) +
+ (1 - alpha)* get_pixel(back, i, j, k);
+ set_pixel(blend, i, j, k, val);
+ }
+ }
+ }
+ return blend;
+ }
+
+ void scale_image_channel(image im, int c, float v)
+ {
+ int i, j;
+ for(j = 0; j < im.h; ++j){
+ for(i = 0; i < im.w; ++i){
+ float pix = get_pixel(im, i, j, c);
+ pix = pix*v;
+ set_pixel(im, i, j, c, pix);
+ }
+ }
+ }
+
+ void saturate_image(image im, float sat)
+ {
+ rgb_to_hsv(im);
+ scale_image_channel(im, 1, sat);
+ hsv_to_rgb(im);
+ constrain_image(im);
+ }
+
+ void exposure_image(image im, float sat)
+ {
+ rgb_to_hsv(im);
+ scale_image_channel(im, 2, sat);
+ hsv_to_rgb(im);
+ constrain_image(im);
+ }
+
+ void saturate_exposure_image(image im, float sat, float exposure)
+ {
+ rgb_to_hsv(im);
+ scale_image_channel(im, 1, sat);
+ scale_image_channel(im, 2, exposure);
+ hsv_to_rgb(im);
+ constrain_image(im);
+ }
+
+ /*
+ image saturate_image(image im, float sat)
+ {
+ image gray = grayscale_image(im);
+ image blend = blend_image(im, gray, sat);
+ free_image(gray);
+ constrain_image(blend);
+ return blend;
+ }
+
+ image brightness_image(image im, float b)
+ {
+ image bright = make_image(im.w, im.h, im.c);
+ return bright;
+ }
+ */
+
+ float bilinear_interpolate(image im, float x, float y, int c)
+ {
+ int ix = (int) floorf(x);
+ int iy = (int) floorf(y);
+
+ float dx = x - ix;
+ float dy = y - iy;
+
+ float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) +
+ dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) +
+ (1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) +
+ dy * dx * get_pixel_extend(im, ix+1, iy+1, c);
+ return val;
+ }
+
+ image resize_image(image im, int w, int h)
+ {
+ image resized = make_image(w, h, im.c);
+ image part = make_image(w, im.h, im.c);
+ int r, c, k;
+ float w_scale = (float)(im.w - 1) / (w - 1);
+ float h_scale = (float)(im.h - 1) / (h - 1);
+ for(k = 0; k < im.c; ++k){
+ for(r = 0; r < im.h; ++r){
+ for(c = 0; c < w; ++c){
+ float val = 0;
+ if(c == w-1 || im.w == 1){
+ val = get_pixel(im, im.w-1, r, k);
+ } else {
+ float sx = c*w_scale;
+ int ix = (int) sx;
+ float dx = sx - ix;
+ val = (1 - dx) * get_pixel(im, ix, r, k) + dx * get_pixel(im, ix+1, r, k);
+ }
+ set_pixel(part, c, r, k, val);
+ }
+ }
+ }
+ for(k = 0; k < im.c; ++k){
+ for(r = 0; r < h; ++r){
+ float sy = r*h_scale;
+ int iy = (int) sy;
+ float dy = sy - iy;
+ for(c = 0; c < w; ++c){
+ float val = (1-dy) * get_pixel(part, c, iy, k);
+ set_pixel(resized, c, r, k, val);
+ }
+ if(r == h-1 || im.h == 1) continue;
+ for(c = 0; c < w; ++c){
+ float val = dy * get_pixel(part, c, iy+1, k);
+ add_pixel(resized, c, r, k, val);
+ }
+ }
+ }
+
+ free_image(part);
+ return resized;
+ }
#include "cuda.h"
-void test_resize(char *filename)
-{
- image im = load_image(filename, 0,0, 3);
- float mag = mag_array(im.data, im.w*im.h*im.c);
- printf("L2 Norm: %f\n", mag);
- image gray = grayscale_image(im);
+ void test_resize(char *filename)
+ {
+ image im = load_image(filename, 0,0, 3);
+ float mag = mag_array(im.data, im.w*im.h*im.c);
+ printf("L2 Norm: %f\n", mag);
+ image gray = grayscale_image(im);
- image sat2 = copy_image(im);
- saturate_image(sat2, 2);
+ image sat2 = copy_image(im);
+ saturate_image(sat2, 2);
- image sat5 = copy_image(im);
- saturate_image(sat5, .5);
+ image sat5 = copy_image(im);
+ saturate_image(sat5, .5);
- image exp2 = copy_image(im);
- exposure_image(exp2, 2);
+ image exp2 = copy_image(im);
+ exposure_image(exp2, 2);
- image exp5 = copy_image(im);
- exposure_image(exp5, .5);
+ image exp5 = copy_image(im);
+ exposure_image(exp5, .5);
#ifdef GPU
- image r = resize_image(im, im.w, im.h);
- image black = make_image(im.w*2 + 3, im.h*2 + 3, 9);
- image black2 = make_image(im.w, im.h, 3);
+ image r = resize_image(im, im.w, im.h);
+ image black = make_image(im.w*2 + 3, im.h*2 + 3, 9);
+ image black2 = make_image(im.w, im.h, 3);
- float *r_gpu = cuda_make_array(r.data, r.w*r.h*r.c);
- float *black_gpu = cuda_make_array(black.data, black.w*black.h*black.c);
- float *black2_gpu = cuda_make_array(black2.data, black2.w*black2.h*black2.c);
- shortcut_gpu(3, r.w, r.h, 1, r_gpu, black.w, black.h, 3, black_gpu);
- //flip_image(r);
- //shortcut_gpu(3, r.w, r.h, 1, r.data, black.w, black.h, 3, black.data);
+ float *r_gpu = cuda_make_array(r.data, r.w*r.h*r.c);
+ float *black_gpu = cuda_make_array(black.data, black.w*black.h*black.c);
+ float *black2_gpu = cuda_make_array(black2.data, black2.w*black2.h*black2.c);
+ shortcut_gpu(3, r.w, r.h, 1, r_gpu, black.w, black.h, 3, black_gpu);
+ //flip_image(r);
+ //shortcut_gpu(3, r.w, r.h, 1, r.data, black.w, black.h, 3, black.data);
- shortcut_gpu(3, black.w, black.h, 3, black_gpu, black2.w, black2.h, 1, black2_gpu);
- cuda_pull_array(black_gpu, black.data, black.w*black.h*black.c);
- cuda_pull_array(black2_gpu, black2.data, black2.w*black2.h*black2.c);
- show_image_layers(black, "Black");
- show_image(black2, "Recreate");
+ shortcut_gpu(3, black.w, black.h, 3, black_gpu, black2.w, black2.h, 1, black2_gpu);
+ cuda_pull_array(black_gpu, black.data, black.w*black.h*black.c);
+ cuda_pull_array(black2_gpu, black2.data, black2.w*black2.h*black2.c);
+ show_image_layers(black, "Black");
+ show_image(black2, "Recreate");
#endif
- show_image(im, "Original");
- show_image(gray, "Gray");
- show_image(sat2, "Saturation-2");
- show_image(sat5, "Saturation-.5");
- show_image(exp2, "Exposure-2");
- show_image(exp5, "Exposure-.5");
+ show_image(im, "Original");
+ show_image(gray, "Gray");
+ show_image(sat2, "Saturation-2");
+ show_image(sat5, "Saturation-.5");
+ show_image(exp2, "Exposure-2");
+ show_image(exp5, "Exposure-.5");
#ifdef OPENCV
- cvWaitKey(0);
+ cvWaitKey(0);
#endif
-}
+ }
#ifdef OPENCV
-image ipl_to_image(IplImage* src)
-{
- unsigned char *data = (unsigned char *)src->imageData;
- int h = src->height;
- int w = src->width;
- int c = src->nChannels;
- int step = src->widthStep;
- image out = make_image(w, h, c);
- int i, j, k, count=0;;
-
- for(k= 0; k < c; ++k){
- for(i = 0; i < h; ++i){
- for(j = 0; j < w; ++j){
- out.data[count++] = data[i*step + j*c + k]/255.;
- }
- }
- }
- return out;
-}
-
-image load_image_cv(char *filename, int channels)
-{
- IplImage* src = 0;
- int flag = -1;
- if (channels == 0) flag = -1;
- else if (channels == 1) flag = 0;
- else if (channels == 3) flag = 1;
- else {
- fprintf(stderr, "OpenCV can't force load with %d channels\n", channels);
- }
-
- if( (src = cvLoadImage(filename, flag)) == 0 )
+ image ipl_to_image(IplImage* src)
{
- fprintf(stderr, "Cannot load image \"%s\"\n", filename);
- char buff[256];
- sprintf(buff, "echo %s >> bad.list", filename);
- system(buff);
- return make_image(10,10,3);
- //exit(0);
- }
- image out = ipl_to_image(src);
- cvReleaseImage(&src);
- rgbgr_image(out);
- return out;
-}
+ unsigned char *data = (unsigned char *)src->imageData;
+ int h = src->height;
+ int w = src->width;
+ int c = src->nChannels;
+ int step = src->widthStep;
+ image out = make_image(w, h, c);
+ int i, j, k, count=0;;
-#endif
-
-
-image load_image_stb(char *filename, int channels)
-{
- int w, h, c;
- unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
- if (!data) {
- fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", filename, stbi_failure_reason());
- exit(0);
- }
- if(channels) c = channels;
- int i,j,k;
- image im = make_image(w, h, c);
- for(k = 0; k < c; ++k){
- for(j = 0; j < h; ++j){
- for(i = 0; i < w; ++i){
- int dst_index = i + w*j + w*h*k;
- int src_index = k + c*i + c*w*j;
- im.data[dst_index] = (float)data[src_index]/255.;
+ for(k= 0; k < c; ++k){
+ for(i = 0; i < h; ++i){
+ for(j = 0; j < w; ++j){
+ out.data[count++] = data[i*step + j*c + k]/255.;
+ }
}
}
+ return out;
}
- free(data);
- return im;
-}
-image load_image(char *filename, int w, int h, int c)
-{
-#ifdef OPENCV
- image out = load_image_cv(filename, c);
-#else
- image out = load_image_stb(filename, c);
+ image load_image_cv(char *filename, int channels)
+ {
+ IplImage* src = 0;
+ int flag = -1;
+ if (channels == 0) flag = -1;
+ else if (channels == 1) flag = 0;
+ else if (channels == 3) flag = 1;
+ else {
+ fprintf(stderr, "OpenCV can't force load with %d channels\n", channels);
+ }
+
+ if( (src = cvLoadImage(filename, flag)) == 0 )
+ {
+ fprintf(stderr, "Cannot load image \"%s\"\n", filename);
+ char buff[256];
+ sprintf(buff, "echo %s >> bad.list", filename);
+ system(buff);
+ return make_image(10,10,3);
+ //exit(0);
+ }
+ image out = ipl_to_image(src);
+ cvReleaseImage(&src);
+ rgbgr_image(out);
+ return out;
+ }
+
#endif
- if((h && w) && (h != out.h || w != out.w)){
- image resized = resize_image(out, w, h);
- free_image(out);
- out = resized;
+
+ image load_image_stb(char *filename, int channels)
+ {
+ int w, h, c;
+ unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
+ if (!data) {
+ fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", filename, stbi_failure_reason());
+ exit(0);
+ }
+ if(channels) c = channels;
+ int i,j,k;
+ image im = make_image(w, h, c);
+ for(k = 0; k < c; ++k){
+ for(j = 0; j < h; ++j){
+ for(i = 0; i < w; ++i){
+ int dst_index = i + w*j + w*h*k;
+ int src_index = k + c*i + c*w*j;
+ im.data[dst_index] = (float)data[src_index]/255.;
+ }
+ }
+ }
+ free(data);
+ return im;
}
- return out;
-}
-image load_image_color(char *filename, int w, int h)
-{
- return load_image(filename, w, h, 3);
-}
+ image load_image(char *filename, int w, int h, int c)
+ {
+#ifdef OPENCV
+ image out = load_image_cv(filename, c);
+#else
+ image out = load_image_stb(filename, c);
+#endif
-image get_image_layer(image m, int l)
-{
- image out = make_image(m.w, m.h, 1);
- int i;
- for(i = 0; i < m.h*m.w; ++i){
- out.data[i] = m.data[i+l*m.h*m.w];
+ if((h && w) && (h != out.h || w != out.w)){
+ image resized = resize_image(out, w, h);
+ free_image(out);
+ out = resized;
+ }
+ return out;
}
- return out;
-}
-float get_pixel(image m, int x, int y, int c)
-{
- assert(x < m.w && y < m.h && c < m.c);
- return m.data[c*m.h*m.w + y*m.w + x];
-}
-float get_pixel_extend(image m, int x, int y, int c)
-{
- if(x < 0 || x >= m.w || y < 0 || y >= m.h || c < 0 || c >= m.c) return 0;
- return get_pixel(m, x, y, c);
-}
-void set_pixel(image m, int x, int y, int c, float val)
-{
- assert(x < m.w && y < m.h && c < m.c);
- m.data[c*m.h*m.w + y*m.w + x] = val;
-}
-void add_pixel(image m, int x, int y, int c, float val)
-{
- assert(x < m.w && y < m.h && c < m.c);
- m.data[c*m.h*m.w + y*m.w + x] += val;
-}
+ image load_image_color(char *filename, int w, int h)
+ {
+ return load_image(filename, w, h, 3);
+ }
-void print_image(image m)
-{
- int i, j, k;
- for(i =0 ; i < m.c; ++i){
- for(j =0 ; j < m.h; ++j){
- for(k = 0; k < m.w; ++k){
- printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]);
- if(k > 30) break;
+ image get_image_layer(image m, int l)
+ {
+ image out = make_image(m.w, m.h, 1);
+ int i;
+ for(i = 0; i < m.h*m.w; ++i){
+ out.data[i] = m.data[i+l*m.h*m.w];
+ }
+ return out;
+ }
+
+ float get_pixel(image m, int x, int y, int c)
+ {
+ assert(x < m.w && y < m.h && c < m.c);
+ return m.data[c*m.h*m.w + y*m.w + x];
+ }
+ float get_pixel_extend(image m, int x, int y, int c)
+ {
+ if(x < 0 || x >= m.w || y < 0 || y >= m.h || c < 0 || c >= m.c) return 0;
+ return get_pixel(m, x, y, c);
+ }
+ void set_pixel(image m, int x, int y, int c, float val)
+ {
+ assert(x < m.w && y < m.h && c < m.c);
+ m.data[c*m.h*m.w + y*m.w + x] = val;
+ }
+ void add_pixel(image m, int x, int y, int c, float val)
+ {
+ assert(x < m.w && y < m.h && c < m.c);
+ m.data[c*m.h*m.w + y*m.w + x] += val;
+ }
+
+ void print_image(image m)
+ {
+ int i, j, k;
+ for(i =0 ; i < m.c; ++i){
+ for(j =0 ; j < m.h; ++j){
+ for(k = 0; k < m.w; ++k){
+ printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]);
+ if(k > 30) break;
+ }
+ printf("\n");
+ if(j > 30) break;
}
printf("\n");
- if(j > 30) break;
}
printf("\n");
}
- printf("\n");
-}
-image collapse_images_vert(image *ims, int n)
-{
- int color = 1;
- int border = 1;
- int h,w,c;
- w = ims[0].w;
- h = (ims[0].h + border) * n - border;
- c = ims[0].c;
- if(c != 3 || !color){
- w = (w+border)*c - border;
- c = 1;
- }
-
- image filters = make_image(w, h, c);
- int i,j;
- for(i = 0; i < n; ++i){
- int h_offset = i*(ims[0].h+border);
- image copy = copy_image(ims[i]);
- //normalize_image(copy);
- if(c == 3 && color){
- embed_image(copy, filters, 0, h_offset);
+ image collapse_images_vert(image *ims, int n)
+ {
+ int color = 1;
+ int border = 1;
+ int h,w,c;
+ w = ims[0].w;
+ h = (ims[0].h + border) * n - border;
+ c = ims[0].c;
+ if(c != 3 || !color){
+ w = (w+border)*c - border;
+ c = 1;
}
- else{
- for(j = 0; j < copy.c; ++j){
- int w_offset = j*(ims[0].w+border);
- image layer = get_image_layer(copy, j);
- embed_image(layer, filters, w_offset, h_offset);
- free_image(layer);
+
+ image filters = make_image(w, h, c);
+ int i,j;
+ for(i = 0; i < n; ++i){
+ int h_offset = i*(ims[0].h+border);
+ image copy = copy_image(ims[i]);
+ //normalize_image(copy);
+ if(c == 3 && color){
+ embed_image(copy, filters, 0, h_offset);
}
- }
- free_image(copy);
- }
- return filters;
-}
-
-image collapse_images_horz(image *ims, int n)
-{
- int color = 1;
- int border = 1;
- int h,w,c;
- int size = ims[0].h;
- h = size;
- w = (ims[0].w + border) * n - border;
- c = ims[0].c;
- if(c != 3 || !color){
- h = (h+border)*c - border;
- c = 1;
- }
-
- image filters = make_image(w, h, c);
- int i,j;
- for(i = 0; i < n; ++i){
- int w_offset = i*(size+border);
- image copy = copy_image(ims[i]);
- //normalize_image(copy);
- if(c == 3 && color){
- embed_image(copy, filters, w_offset, 0);
- }
- else{
- for(j = 0; j < copy.c; ++j){
- int h_offset = j*(size+border);
- image layer = get_image_layer(copy, j);
- embed_image(layer, filters, w_offset, h_offset);
- free_image(layer);
+ else{
+ for(j = 0; j < copy.c; ++j){
+ int w_offset = j*(ims[0].w+border);
+ image layer = get_image_layer(copy, j);
+ embed_image(layer, filters, w_offset, h_offset);
+ free_image(layer);
+ }
}
+ free_image(copy);
}
- free_image(copy);
+ return filters;
+ }
+
+ image collapse_images_horz(image *ims, int n)
+ {
+ int color = 1;
+ int border = 1;
+ int h,w,c;
+ int size = ims[0].h;
+ h = size;
+ w = (ims[0].w + border) * n - border;
+ c = ims[0].c;
+ if(c != 3 || !color){
+ h = (h+border)*c - border;
+ c = 1;
+ }
+
+ image filters = make_image(w, h, c);
+ int i,j;
+ for(i = 0; i < n; ++i){
+ int w_offset = i*(size+border);
+ image copy = copy_image(ims[i]);
+ //normalize_image(copy);
+ if(c == 3 && color){
+ embed_image(copy, filters, w_offset, 0);
+ }
+ else{
+ for(j = 0; j < copy.c; ++j){
+ int h_offset = j*(size+border);
+ image layer = get_image_layer(copy, j);
+ embed_image(layer, filters, w_offset, h_offset);
+ free_image(layer);
+ }
+ }
+ free_image(copy);
+ }
+ return filters;
+ }
+
+ void show_image_normalized(image im, const char *name)
+ {
+ image c = copy_image(im);
+ normalize_image(c);
+ show_image(c, name);
+ free_image(c);
}
- return filters;
-}
-void show_images(image *ims, int n, char *window)
-{
- image m = collapse_images_vert(ims, n);
- /*
- int w = 448;
- int h = ((float)m.h/m.w) * 448;
- if(h > 896){
- h = 896;
- w = ((float)m.w/m.h) * 896;
- }
- image sized = resize_image(m, w, h);
- */
- normalize_image(m);
- image sized = resize_image(m, m.w, m.h);
- save_image(sized, window);
- show_image(sized, window);
- free_image(sized);
- free_image(m);
-}
+ void show_images(image *ims, int n, char *window)
+ {
+ image m = collapse_images_vert(ims, n);
+ /*
+ int w = 448;
+ int h = ((float)m.h/m.w) * 448;
+ if(h > 896){
+ h = 896;
+ w = ((float)m.w/m.h) * 896;
+ }
+ image sized = resize_image(m, w, h);
+ */
+ normalize_image(m);
+ image sized = resize_image(m, m.w, m.h);
+ save_image(sized, window);
+ show_image(sized, window);
+ free_image(sized);
+ free_image(m);
+ }
-void free_image(image m)
-{
- free(m.data);
-}
+ void free_image(image m)
+ {
+ free(m.data);
+ }
diff --git a/src/image.h b/src/image.h
index b4a7a23..bf6ef99 100644
--- a/src/image.h
+++ b/src/image.h
@@ -36,6 +36,7 @@
void translate_image(image m, float s);
void normalize_image(image p);
image rotate_image(image m, float rad);
+void rotate_image_cw(image im, int times);
void embed_image(image source, image dest, int dx, int dy);
void saturate_image(image im, float sat);
void exposure_image(image im, float sat);
@@ -52,6 +53,7 @@
image collapse_images_vert(image *ims, int n);
void show_image(image p, const char *name);
+void show_image_normalized(image im, const char *name);
void save_image(image p, const char *name);
void show_images(image *ims, int n, char *window);
void show_image_layers(image p, char *name);
diff --git a/src/layer.h b/src/layer.h
index 9308370..3efd597 100644
--- a/src/layer.h
+++ b/src/layer.h
@@ -56,6 +56,7 @@
int binary;
int steps;
int hidden;
+ float dot;
float angle;
float jitter;
float saturation;
diff --git a/src/matrix.c b/src/matrix.c
index 2e7001e..ee14979 100644
--- a/src/matrix.c
+++ b/src/matrix.c
@@ -33,6 +33,35 @@
return (float)correct/truth.rows;
}
+void scale_matrix(matrix m, float scale)
+{
+ int i,j;
+ for(i = 0; i < m.rows; ++i){
+ for(j = 0; j < m.cols; ++j){
+ m.vals[i][j] *= scale;
+ }
+ }
+}
+
+matrix resize_matrix(matrix m, int size)
+{
+ int i;
+ if (m.rows == size) return m;
+ if (m.rows < size) {
+ m.vals = realloc(m.vals, size*sizeof(float*));
+ for (i = m.rows; i < size; ++i) {
+ m.vals[i] = calloc(m.cols, sizeof(float));
+ }
+ } else if (m.rows > size) {
+ for (i = size; i < m.rows; ++i) {
+ free(m.vals[i]);
+ }
+ m.vals = realloc(m.vals, size*sizeof(float*));
+ }
+ m.rows = size;
+ return m;
+}
+
void matrix_add_matrix(matrix from, matrix to)
{
assert(from.rows == to.rows && from.cols == to.cols);
@@ -114,6 +143,19 @@
return m;
}
+void matrix_to_csv(matrix m)
+{
+ int i, j;
+
+ for(i = 0; i < m.rows; ++i){
+ for(j = 0; j < m.cols; ++j){
+ if(j > 0) printf(",");
+ printf("%.17g", m.vals[i][j]);
+ }
+ printf("\n");
+ }
+}
+
void print_matrix(matrix m)
{
int i, j;
diff --git a/src/matrix.h b/src/matrix.h
index d84431c..641b596 100644
--- a/src/matrix.h
+++ b/src/matrix.h
@@ -10,9 +10,12 @@
void print_matrix(matrix m);
matrix csv_to_matrix(char *filename);
+void matrix_to_csv(matrix m);
matrix hold_out_matrix(matrix *m, int n);
float matrix_topk_accuracy(matrix truth, matrix guess, int k);
void matrix_add_matrix(matrix from, matrix to);
+void scale_matrix(matrix m, float scale);
+matrix resize_matrix(matrix m, int size);
float *pop_column(matrix *m, int c);
diff --git a/src/parser.c b/src/parser.c
index 97ce7a1..923e24c 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -160,6 +160,7 @@
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary);
layer.flipped = option_find_int_quiet(options, "flipped", 0);
+ layer.dot = option_find_float_quiet(options, "dot", 0);
char *weights = option_find_str(options, "weights", 0);
char *biases = option_find_str(options, "biases", 0);
@@ -850,7 +851,15 @@
fread(l.scales, sizeof(float), l.n, fp);
fread(l.rolling_mean, sizeof(float), l.n, fp);
fread(l.rolling_variance, sizeof(float), l.n, fp);
+ /*
+ int i;
+ for(i = 0; i < l.n; ++i){
+ if(l.rolling_mean[i] > 1 || l.rolling_mean[i] < -1 || l.rolling_variance[i] > 1 || l.rolling_variance[i] < -1)
+ printf("%f %f\n", l.rolling_mean[i], l.rolling_variance[i]);
+ }
+ */
}
+ fflush(stdout);
fread(l.filters, sizeof(float), num, fp);
if (l.flipped) {
transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
diff --git a/src/tag.c b/src/tag.c
index 8b63d31..a00a161 100644
--- a/src/tag.c
+++ b/src/tag.c
@@ -99,6 +99,7 @@
int indexes[10];
char buff[256];
char *input = buff;
+ int size = net.w;
while(1){
if(filename){
strncpy(input, filename, 256);
@@ -109,11 +110,12 @@
if(!input) return;
strtok(input, "\n");
}
- image im = load_image_color(input, net.w, net.h);
- //resize_network(&net, im.w, im.h);
- printf("%d %d\n", im.w, im.h);
+ image im = load_image_color(input, 0, 0);
+ image r = resize_min(im, size);
+ resize_network(&net, r.w, r.h);
+ printf("%d %d\n", r.w, r.h);
- float *X = im.data;
+ float *X = r.data;
time=clock();
float *predictions = network_predict(net, X);
top_predictions(net, 10, indexes);
@@ -122,6 +124,7 @@
int index = indexes[i];
printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
}
+ free_image(r);
free_image(im);
if (filename) break;
}
diff --git a/src/yolo.c b/src/yolo.c
index 382cbaa..02c4fba 100644
--- a/src/yolo.c
+++ b/src/yolo.c
@@ -395,13 +395,7 @@
#endif
*/
-void demo_yolo(char *cfgfile, char *weightfile, float thresh, int cam_index);
-#ifndef GPU
-void demo_yolo(char *cfgfile, char *weightfile, float thresh, int cam_index)
-{
- fprintf(stderr, "Darknet must be compiled with CUDA for YOLO demo.\n");
-}
-#endif
+void demo_yolo(char *cfgfile, char *weightfile, float thresh, int cam_index, char *filename);
void run_yolo(int argc, char **argv)
{
@@ -426,5 +420,5 @@
else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights);
- else if(0==strcmp(argv[2], "demo")) demo_yolo(cfg, weights, thresh, cam_index);
+ else if(0==strcmp(argv[2], "demo")) demo_yolo(cfg, weights, thresh, cam_index, filename);
}
diff --git a/src/yolo_demo.c b/src/yolo_demo.c
new file mode 100644
index 0000000..4e3f839
--- /dev/null
+++ b/src/yolo_demo.c
@@ -0,0 +1,125 @@
+#include "network.h"
+#include "detection_layer.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "parser.h"
+#include "box.h"
+#include "image.h"
+#include <sys/time.h>
+
+#ifdef OPENCV
+#include "opencv2/highgui/highgui.hpp"
+#include "opencv2/imgproc/imgproc.hpp"
+image ipl_to_image(IplImage* src);
+void convert_yolo_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
+void draw_yolo(image im, int num, float thresh, box *boxes, float **probs);
+
+extern char *voc_names[];
+extern image voc_labels[];
+
+static float **probs;
+static box *boxes;
+static network net;
+static image in ;
+static image in_s ;
+static image det ;
+static image det_s;
+static image disp ;
+static CvCapture * cap;
+static float fps = 0;
+static float demo_thresh = 0;
+
+void *fetch_in_thread(void *ptr)
+{
+ in = get_image_from_stream(cap);
+ in_s = resize_image(in, net.w, net.h);
+ return 0;
+}
+
+void *detect_in_thread(void *ptr)
+{
+ float nms = .4;
+
+ detection_layer l = net.layers[net.n-1];
+ float *X = det_s.data;
+ float *predictions = network_predict(net, X);
+ free_image(det_s);
+ convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, demo_thresh, probs, boxes, 0);
+ if (nms > 0) do_nms(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+ printf("\033[2J");
+ printf("\033[1;1H");
+ printf("\nFPS:%.0f\n",fps);
+ printf("Objects:\n\n");
+ draw_detections(det, l.side*l.side*l.n, demo_thresh, boxes, probs, voc_names, voc_labels, 20);
+ return 0;
+}
+
+void demo_yolo(char *cfgfile, char *weightfile, float thresh, int cam_index, char *filename)
+{
+ demo_thresh = thresh;
+ printf("YOLO demo\n");
+ net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+
+ srand(2222222);
+
+ if(filename){
+ cap = cvCaptureFromFile(filename);
+ }else{
+ cap = cvCaptureFromCAM(cam_index);
+ }
+
+ if(!cap) error("Couldn't connect to webcam.\n");
+ cvNamedWindow("YOLO", CV_WINDOW_NORMAL);
+ cvResizeWindow("YOLO", 512, 512);
+
+ detection_layer l = net.layers[net.n-1];
+ int j;
+
+ boxes = (box *)calloc(l.side*l.side*l.n, sizeof(box));
+ probs = (float **)calloc(l.side*l.side*l.n, sizeof(float *));
+ for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
+
+ pthread_t fetch_thread;
+ pthread_t detect_thread;
+
+ fetch_in_thread(0);
+ det = in;
+ det_s = in_s;
+
+ fetch_in_thread(0);
+ detect_in_thread(0);
+ disp = det;
+ det = in;
+ det_s = in_s;
+
+ while(1){
+ struct timeval tval_before, tval_after, tval_result;
+ gettimeofday(&tval_before, NULL);
+ if(pthread_create(&fetch_thread, 0, fetch_in_thread, 0)) error("Thread creation failed");
+ if(pthread_create(&detect_thread, 0, detect_in_thread, 0)) error("Thread creation failed");
+ show_image(disp, "YOLO");
+ free_image(disp);
+ cvWaitKey(1);
+ pthread_join(fetch_thread, 0);
+ pthread_join(detect_thread, 0);
+
+ disp = det;
+ det = in;
+ det_s = in_s;
+
+ gettimeofday(&tval_after, NULL);
+ timersub(&tval_after, &tval_before, &tval_result);
+ float curr = 1000000.f/((long int)tval_result.tv_usec);
+ fps = .9*fps + .1*curr;
+ }
+}
+#else
+void demo_yolo(char *cfgfile, char *weightfile, float thresh, int cam_index, char *filename){
+ fprintf(stderr, "YOLO demo needs OpenCV for webcam images.\n");
+}
+#endif
+
--
Gitblit v1.10.0