From d1965bdb969920c85f72785ec6e1f3d7bda957de Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Mar 2016 06:18:42 +0000
Subject: [PATCH] Go

---
 src/cifar.c |  163 ++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 162 insertions(+), 1 deletions(-)

diff --git a/src/cifar.c b/src/cifar.c
index f887877..de52bb8 100644
--- a/src/cifar.c
+++ b/src/cifar.c
@@ -33,7 +33,7 @@
 
         float loss = train_network_sgd(net, train, 1);
         if(avg_loss == -1) avg_loss = loss;
-        avg_loss = avg_loss*.9 + loss*.1;
+        avg_loss = avg_loss*.95 + loss*.05;
         printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
         if(*net.seen/N > epoch){
             epoch = *net.seen/N;
@@ -57,6 +57,95 @@
     free_data(train);
 }
 
+void train_cifar_distill(char *cfgfile, char *weightfile)
+{
+    data_seed = time(0);
+    srand(time(0));
+    float avg_loss = -1;
+    char *base = basecfg(cfgfile);
+    printf("%s\n", base);
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+
+    char *backup_directory = "/home/pjreddie/backup/";
+    int classes = 10;
+    int N = 50000;
+
+    char **labels = get_labels("data/cifar/labels.txt");
+    int epoch = (*net.seen)/N;
+
+    data train = load_all_cifar10();
+    matrix soft = csv_to_matrix("results/ensemble.csv");
+
+    float weight = .9;
+    scale_matrix(soft, weight);
+    scale_matrix(train.y, 1. - weight);
+    matrix_add_matrix(soft, train.y);
+
+    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
+        clock_t time=clock();
+
+        float loss = train_network_sgd(net, train, 1);
+        if(avg_loss == -1) avg_loss = loss;
+        avg_loss = avg_loss*.95 + loss*.05;
+        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
+        if(*net.seen/N > epoch){
+            epoch = *net.seen/N;
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
+            save_weights(net, buff);
+        }
+        if(get_current_batch(net)%100 == 0){
+            char buff[256];
+            sprintf(buff, "%s/%s.backup",backup_directory,base);
+            save_weights(net, buff);
+        }
+    }
+    char buff[256];
+    sprintf(buff, "%s/%s.weights", backup_directory, base);
+    save_weights(net, buff);
+
+    free_network(net);
+    free_ptrs((void**)labels, classes);
+    free(base);
+    free_data(train);
+}
+
+void test_cifar_multi(char *filename, char *weightfile)
+{
+    network net = parse_network_cfg(filename);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    srand(time(0));
+
+    float avg_acc = 0;
+    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
+
+    int i;
+    for(i = 0; i < test.X.rows; ++i){
+        image im = float_to_image(32, 32, 3, test.X.vals[i]);
+
+        float pred[10] = {0};
+
+        float *p = network_predict(net, im.data);
+        axpy_cpu(10, 1, p, 1, pred, 1);
+        flip_image(im);
+        p = network_predict(net, im.data);
+        axpy_cpu(10, 1, p, 1, pred, 1);
+
+        int index = max_index(pred, 10);
+        int class = max_index(test.y.vals[i], 10);
+        if(index == class) avg_acc += 1;
+        free_image(im);
+        printf("%4d: %.2f%%\n", i, 100.*avg_acc/(i+1));
+    }
+}
+
 void test_cifar(char *filename, char *weightfile)
 {
     network net = parse_network_cfg(filename);
@@ -79,6 +168,73 @@
     free_data(test);
 }
 
+void test_cifar_csv(char *filename, char *weightfile)
+{
+    network net = parse_network_cfg(filename);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
+
+    matrix pred = network_predict_data(net, test);
+
+    int i;
+    for(i = 0; i < test.X.rows; ++i){
+        image im = float_to_image(32, 32, 3, test.X.vals[i]);
+        flip_image(im);
+    }
+    matrix pred2 = network_predict_data(net, test);
+    scale_matrix(pred, .5);
+    scale_matrix(pred2, .5);
+    matrix_add_matrix(pred2, pred);
+
+    matrix_to_csv(pred);
+    fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
+    free_data(test);
+}
+
+void test_cifar_csvtrain(char *filename, char *weightfile)
+{
+    network net = parse_network_cfg(filename);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    data test = load_all_cifar10();
+
+    matrix pred = network_predict_data(net, test);
+
+    int i;
+    for(i = 0; i < test.X.rows; ++i){
+        image im = float_to_image(32, 32, 3, test.X.vals[i]);
+        flip_image(im);
+    }
+    matrix pred2 = network_predict_data(net, test);
+    scale_matrix(pred, .5);
+    scale_matrix(pred2, .5);
+    matrix_add_matrix(pred2, pred);
+
+    matrix_to_csv(pred);
+    fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
+    free_data(test);
+}
+
+void eval_cifar_csv()
+{
+    data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
+
+    matrix pred = csv_to_matrix("results/combined.csv");
+    fprintf(stderr, "%d %d\n", pred.rows, pred.cols);
+
+    fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
+    free_data(test);
+    free_matrix(pred);
+}
+
+
 void run_cifar(int argc, char **argv)
 {
     if(argc < 4){
@@ -89,7 +245,12 @@
     char *cfg = argv[3];
     char *weights = (argc > 4) ? argv[4] : 0;
     if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights);
+    else if(0==strcmp(argv[2], "distill")) train_cifar_distill(cfg, weights);
     else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights);
+    else if(0==strcmp(argv[2], "multi")) test_cifar_multi(cfg, weights);
+    else if(0==strcmp(argv[2], "csv")) test_cifar_csv(cfg, weights);
+    else if(0==strcmp(argv[2], "csvtrain")) test_cifar_csvtrain(cfg, weights);
+    else if(0==strcmp(argv[2], "eval")) eval_cifar_csv();
 }
 
 

--
Gitblit v1.10.0