From d1965bdb969920c85f72785ec6e1f3d7bda957de Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Mar 2016 06:18:42 +0000
Subject: [PATCH] Go

---
 src/classifier.c |   93 +++++++++++++++++++++++++++++++++++++++-------
 1 files changed, 79 insertions(+), 14 deletions(-)

diff --git a/src/classifier.c b/src/classifier.c
index fdbe534..2e974a5 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -3,6 +3,7 @@
 #include "parser.h"
 #include "option_list.h"
 #include "blas.h"
+#include <sys/time.h>
 
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
@@ -239,8 +240,8 @@
         }
         int w = net.w;
         int h = net.h;
-        image im = load_image_color(paths[i], w, h);
         int shift = 32;
+        image im = load_image_color(paths[i], w+shift, h+shift);
         image images[10];
         images[0] = crop_image(im, -shift, -shift, w, h);
         images[1] = crop_image(im, shift, -shift, w, h);
@@ -299,6 +300,7 @@
     float avg_topk = 0;
     int *indexes = calloc(topk, sizeof(int));
 
+    int size = net.w;
     for(i = 0; i < m; ++i){
         int class = -1;
         char *path = paths[i];
@@ -309,13 +311,15 @@
             }
         }
         image im = load_image_color(paths[i], 0, 0);
-        resize_network(&net, im.w, im.h);
+        image resized = resize_min(im, size);
+        resize_network(&net, resized.w, resized.h);
         //show_image(im, "orig");
         //show_image(crop, "cropped");
         //cvWaitKey(0);
-        float *pred = network_predict(net, im.data);
+        float *pred = network_predict(net, resized.data);
 
         free_image(im);
+        free_image(resized);
         top_k(pred, classes, topk, indexes);
 
         if(indexes[0] == class) avg_acc += 1;
@@ -406,7 +410,7 @@
 
     char **labels = get_labels(label_list);
     list *plist = get_paths(valid_list);
-    int scales[] = {224, 256, 384, 480, 512};
+    int scales[] = {192, 224, 288, 320, 352};
     int nscales = sizeof(scales)/sizeof(scales[0]);
 
     char **paths = (char **)list_to_array(plist);
@@ -429,16 +433,8 @@
         float *pred = calloc(classes, sizeof(float));
         image im = load_image_color(paths[i], 0, 0);
         for(j = 0; j < nscales; ++j){
-            int w, h;
-            if(im.w < im.h){
-                w = scales[j];
-                h = (im.h*w)/im.w;
-            } else {
-                h = scales[j];
-                w = (im.w * h) / im.h;
-            }
-            resize_network(&net, w, h);
-            image r = resize_image(im, w, h);
+            image r = resize_min(im, scales[j]);
+            resize_network(&net, r.w, r.h);
             float *p = network_predict(net, r.data);
             axpy_cpu(classes, 1, p, 1, pred, 1);
             flip_image(r);
@@ -577,6 +573,73 @@
 }
 
 
+void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
+{
+#ifdef OPENCV
+    printf("Classifier Demo\n");
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    list *options = read_data_cfg(datacfg);
+
+    srand(2222222);
+    CvCapture * cap;
+
+    if(filename){
+        cap = cvCaptureFromFile(filename);
+    }else{
+        cap = cvCaptureFromCAM(cam_index);
+    }
+
+    int top = option_find_int(options, "top", 1);
+
+    char *name_list = option_find_str(options, "names", 0);
+    char **names = get_labels(name_list);
+
+    int *indexes = calloc(top, sizeof(int));
+
+    if(!cap) error("Couldn't connect to webcam.\n");
+    cvNamedWindow("Classifier", CV_WINDOW_NORMAL); 
+    cvResizeWindow("Classifier", 512, 512);
+    float fps = 0;
+    int i;
+
+    while(1){
+        struct timeval tval_before, tval_after, tval_result;
+        gettimeofday(&tval_before, NULL);
+
+        image in = get_image_from_stream(cap);
+        image in_s = resize_image(in, net.w, net.h);
+        show_image(in, "Classifier");
+
+        float *predictions = network_predict(net, in_s.data);
+        top_predictions(net, top, indexes);
+
+        printf("\033[2J");
+        printf("\033[1;1H");
+        printf("\nFPS:%.0f\n",fps);
+
+        for(i = 0; i < top; ++i){
+            int index = indexes[i];
+            printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
+        }
+
+        free_image(in_s);
+        free_image(in);
+
+        cvWaitKey(10);
+
+        gettimeofday(&tval_after, NULL);
+        timersub(&tval_after, &tval_before, &tval_result);
+        float curr = 1000000.f/((long int)tval_result.tv_usec);
+        fps = .9*fps + .1*curr;
+    }
+#endif
+}
+
+
 void run_classifier(int argc, char **argv)
 {
     if(argc < 4){
@@ -584,6 +647,7 @@
         return;
     }
 
+    int cam_index = find_int_arg(argc, argv, "-c", 0);
     char *data = argv[3];
     char *cfg = argv[4];
     char *weights = (argc > 5) ? argv[5] : 0;
@@ -592,6 +656,7 @@
     int layer = layer_s ? atoi(layer_s) : -1;
     if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
     else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
+    else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
     else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
     else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
     else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);

--
Gitblit v1.10.0