From d1d56a2a72247ef080eb124ce6605f3218ce4295 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 10 Jul 2015 23:38:07 +0000
Subject: [PATCH] Added alexnet cfg
---
src/detection.c | 297 ++++++++++++++++++++++++++++++++++++++++-------------------
1 files changed, 202 insertions(+), 95 deletions(-)
diff --git a/src/detection.c b/src/detection.c
index e927140..94d3700 100644
--- a/src/detection.c
+++ b/src/detection.c
@@ -1,13 +1,16 @@
#include "network.h"
+#include "detection_layer.h"
+#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
+#include "box.h"
-char *class_names[] = {"bg", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-#define AMNT 3
-void draw_detection(image im, float *box, int side)
+char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
+
+void draw_detection(image im, float *box, int side, char *label)
{
- int classes = 21;
+ int classes = 20;
int elems = 4+classes;
int j;
int r, c;
@@ -15,43 +18,40 @@
for(r = 0; r < side; ++r){
for(c = 0; c < side; ++c){
j = (r*side + c) * elems;
- //printf("%d\n", j);
- //printf("Prob: %f\n", box[j]);
int class = max_index(box+j, classes);
- if(box[j+class] > .02 || 1){
- //int z;
- //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
+ if(box[j+class] > 0.2){
+ int width = box[j+class]*5 + 1;
printf("%f %s\n", box[j+class], class_names[class]);
float red = get_color(0,class,classes);
float green = get_color(1,class,classes);
float blue = get_color(2,class,classes);
- //float maxheight = distance_from_edge(r, side);
- //float maxwidth = distance_from_edge(c, side);
j += classes;
- float y = box[j+0];
- float x = box[j+1];
+ float x = box[j+0];
+ float y = box[j+1];
x = (x+c)/side;
y = (y+r)/side;
- float h = box[j+2]; //*maxheight;
- float w = box[j+3]; //*maxwidth;
- //printf("coords %f %f %f %f\n", x, y, w, h);
+ float w = box[j+2]; //*maxwidth;
+ float h = box[j+3]; //*maxheight;
+ h = h*h;
+ w = w*w;
int left = (x-w/2)*im.w;
int right = (x+w/2)*im.w;
int top = (y-h/2)*im.h;
int bot = (y+h/2)*im.h;
- draw_box(im, left, top, right, bot, red, green, blue);
+ draw_box_width(im, left, top, right, bot, width, red, green, blue);
}
}
}
- //printf("Done\n");
- show_image(im, "box");
- cvWaitKey(0);
+ show_image(im, label);
}
void train_detection(char *cfgfile, char *weightfile)
{
+ srand(time(0));
+ data_seed = time(0);
+ int imgnet = 0;
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
@@ -59,30 +59,46 @@
if(weightfile){
load_weights(&net, weightfile);
}
- //net.seen = 0;
+ detection_layer layer = get_network_detection_layer(net);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 128;
- srand(time(0));
- //srand(23410);
int i = net.seen/imgs;
- list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
- char **paths = (char **)list_to_array(plist);
- printf("%d\n", plist->size);
data train, buffer;
- int im_dim = 448;
- int classes = 20;
- int background = 1;
- pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, background, &buffer);
+
+ int classes = layer.classes;
+ int background = (layer.background || layer.objectness);
+ printf("%d\n", background);
+ int side = sqrt(get_detection_layer_locations(layer));
+
+ char **paths;
+ list *plist;
+ if (imgnet){
+ plist = get_paths("/home/pjreddie/data/imagenet/det.train.list");
+ }else{
+ //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt");
+ //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
+ //plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
+ //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
+ //plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
+ plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
+ }
+ paths = (char **)list_to_array(plist);
+ pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
clock_t time;
while(1){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
- load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, background, &buffer);
+ load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
- //image im = float_to_image(im_dim, im_dim, 3, train.X.vals[114]);
- //draw_detection(im, train.y.vals[114], 7);
+/*
+ image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
+ image copy = copy_image(im);
+ draw_detection(copy, train.y.vals[114], 7, "truth");
+ cvWaitKey(0);
+ free_image(copy);
+ */
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
@@ -91,7 +107,10 @@
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
- if(i%100==0){
+ if(i == 100){
+ net.learning_rate *= 10;
+ }
+ if(i%1000==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff);
@@ -100,96 +119,183 @@
}
}
+void convert_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
+{
+ int i,j;
+ int per_box = 4+classes+(background || objectness);
+ for (i = 0; i < num_boxes*num_boxes; ++i){
+ float scale = 1;
+ if(objectness) scale = 1-predictions[i*per_box];
+ int offset = i*per_box+(background||objectness);
+ for(j = 0; j < classes; ++j){
+ float prob = scale*predictions[offset+j];
+ probs[i][j] = (prob > thresh) ? prob : 0;
+ }
+ int row = i / num_boxes;
+ int col = i % num_boxes;
+ offset += classes;
+ boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w;
+ boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h;
+ boxes[i].w = pow(predictions[offset + 2], 2) * w;
+ boxes[i].h = pow(predictions[offset + 3], 2) * h;
+ }
+}
+
+void do_nms(box *boxes, float **probs, int num_boxes, int classes, float thresh)
+{
+ int i, j, k;
+ for(i = 0; i < num_boxes*num_boxes; ++i){
+ int any = 0;
+ for(k = 0; k < classes; ++k) any = any || (probs[i][k] > 0);
+ if(!any) {
+ continue;
+ }
+ for(j = i+1; j < num_boxes*num_boxes; ++j){
+ if (box_iou(boxes[i], boxes[j]) > thresh){
+ for(k = 0; k < classes; ++k){
+ if (probs[i][k] < probs[j][k]) probs[i][k] = 0;
+ else probs[j][k] = 0;
+ }
+ }
+ }
+ }
+}
+
+void print_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
+{
+ int i, j;
+ for(i = 0; i < num_boxes*num_boxes; ++i){
+ float xmin = boxes[i].x - boxes[i].w/2.;
+ float xmax = boxes[i].x + boxes[i].w/2.;
+ float ymin = boxes[i].y - boxes[i].h/2.;
+ float ymax = boxes[i].y + boxes[i].h/2.;
+
+ if (xmin < 0) xmin = 0;
+ if (ymin < 0) ymin = 0;
+ if (xmax > w) xmax = w;
+ if (ymax > h) ymax = h;
+
+ for(j = 0; j < classes; ++j){
+ if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
+ xmin, ymin, xmax, ymax);
+ }
+ }
+}
+
void validate_detection(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
+ set_batch_network(&net, 1);
+ detection_layer layer = get_network_detection_layer(net);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
- list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
- //list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
+ char *base = "results/comp4_det_test_";
+ list *plist = get_paths("data/voc.2012test.list");
char **paths = (char **)list_to_array(plist);
- int im_size = 448;
- int classes = 20;
- int background = 0;
- int nuisance = 1;
- int num_boxes = 7;
- int per_box = 4+classes+background+nuisance;
- int num_output = num_boxes*num_boxes*per_box;
+
+ int classes = layer.classes;
+ int objectness = layer.objectness;
+ int background = layer.background;
+ int num_boxes = sqrt(get_detection_layer_locations(layer));
+
+ int j;
+ FILE **fps = calloc(classes, sizeof(FILE *));
+ for(j = 0; j < classes; ++j){
+ char buff[1024];
+ snprintf(buff, 1024, "%s%s.txt", base, class_names[j]);
+ fps[j] = fopen(buff, "w");
+ }
+ box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
+ float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
+ for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
int m = plist->size;
- int i = 0;
- int splits = 100;
- int num = (i+1)*m/splits - i*m/splits;
+ int i=0;
+ int t;
- fprintf(stderr, "%d\n", m);
- data val, buffer;
- pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer);
- clock_t time;
- for(i = 1; i <= splits; ++i){
- time=clock();
- pthread_join(load_thread, 0);
- val = buffer;
+ float thresh = .001;
+ int nms = 1;
+ float iou_thresh = .5;
- num = (i+1)*m/splits - i*m/splits;
- char **part = paths+(i*m/splits);
- if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
-
- fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
- matrix pred = network_predict_data(net, val);
- int j, k, class;
- for(j = 0; j < pred.rows; ++j){
- for(k = 0; k < pred.cols; k += per_box){
- float scale = 1.;
- int index = k/per_box;
- int row = index / num_boxes;
- int col = index % num_boxes;
- if (nuisance) scale = 1.-pred.vals[j][k];
- for (class = 0; class < classes; ++class){
- int ci = k+classes+background+nuisance;
- float y = (pred.vals[j][ci + 0] + row)/num_boxes;
- float x = (pred.vals[j][ci + 1] + col)/num_boxes;
- float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes);
- h = h*h;
- float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes);
- w = w*w;
- printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], y, x, h, w);
- }
- }
- }
-
- time=clock();
- free_data(val);
+ int nthreads = 8;
+ image *val = calloc(nthreads, sizeof(image));
+ image *val_resized = calloc(nthreads, sizeof(image));
+ image *buf = calloc(nthreads, sizeof(image));
+ image *buf_resized = calloc(nthreads, sizeof(image));
+ pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
+ for(t = 0; t < nthreads; ++t){
+ thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
}
+ time_t start = time(0);
+ for(i = nthreads; i < m+nthreads; i += nthreads){
+ fprintf(stderr, "%d\n", i);
+ for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+ pthread_join(thr[t], 0);
+ val[t] = buf[t];
+ val_resized[t] = buf_resized[t];
+ }
+ for(t = 0; t < nthreads && i+t < m; ++t){
+ thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
+ }
+ for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+ char *path = paths[i+t-nthreads];
+ char *id = basecfg(path);
+ float *X = val_resized[t].data;
+ float *predictions = network_predict(net, X);
+ int w = val[t].w;
+ int h = val[t].h;
+ convert_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
+ if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
+ print_detections(fps, id, boxes, probs, num_boxes, classes, w, h);
+ free(id);
+ free_image(val[t]);
+ free_image(val_resized[t]);
+ }
+ }
+ fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
-void test_detection(char *cfgfile, char *weightfile)
+void test_detection(char *cfgfile, char *weightfile, char *filename)
{
+
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
+ detection_layer layer = get_network_detection_layer(net);
+ if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n");
int im_size = 448;
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
- char filename[256];
+ char input[256];
while(1){
- fgets(filename, 256, stdin);
- strtok(filename, "\n");
- image im = load_image_color(filename, im_size, im_size);
- translate_image(im, -128);
- scale_image(im, 1/128.);
- printf("%d %d %d\n", im.h, im.w, im.c);
- float *X = im.data;
+ if(filename){
+ strncpy(input, filename, 256);
+ } else {
+ printf("Enter Image Path: ");
+ fflush(stdout);
+ fgets(input, 256, stdin);
+ strtok(input, "\n");
+ }
+ image im = load_image_color(input,0,0);
+ image sized = resize_image(im, im_size, im_size);
+ float *X = sized.data;
time=clock();
float *predictions = network_predict(net, X);
- printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
- draw_detection(im, predictions, 7);
+ printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+ draw_detection(im, predictions, 7, "predictions");
free_image(im);
+ free_image(sized);
+#ifdef OPENCV
+ cvWaitKey(0);
+ cvDestroyAllWindows();
+#endif
+ if (filename) break;
}
}
@@ -202,7 +308,8 @@
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
- if(0==strcmp(argv[2], "test")) test_detection(cfg, weights);
+ char *filename = (argc > 5) ? argv[5]: 0;
+ if(0==strcmp(argv[2], "test")) test_detection(cfg, weights, filename);
else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
}
--
Gitblit v1.10.0