From d28f7e6681ffe02a151b9dc89098d7fcef50b214 Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Wed, 28 Mar 2018 20:51:14 +0000
Subject: [PATCH] Update Readme.md

---
 src/detector.c |  643 +++++++++++++++++++++++++++++++++++++++++++++++++++++++---
 1 files changed, 610 insertions(+), 33 deletions(-)

diff --git a/src/detector.c b/src/detector.c
index 367b3a3..77175b4 100644
--- a/src/detector.c
+++ b/src/detector.c
@@ -10,19 +10,28 @@
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
 #include "opencv2/core/core_c.h"
+//#include "opencv2/core/core.hpp"
 #include "opencv2/core/version.hpp"
+#include "opencv2/imgproc/imgproc_c.h"
+
 #ifndef CV_VERSION_EPOCH
 #include "opencv2/videoio/videoio_c.h"
-#pragma comment(lib, "opencv_world320.lib")  
+#define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR)""CVAUX_STR(CV_VERSION_REVISION)
+#pragma comment(lib, "opencv_world" OPENCV_VERSION ".lib")
 #else
-#pragma comment(lib, "opencv_core2413.lib")  
-#pragma comment(lib, "opencv_imgproc2413.lib")  
-#pragma comment(lib, "opencv_highgui2413.lib") 
+#define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)""CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR)
+#pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib")
+#pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib")
+#pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib")
 #endif
-#endif
+
+IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size);
+void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches);
+#endif	// OPENCV
+
 static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
 
-void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
+void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show)
 {
     list *options = read_data_cfg(datacfg);
     char *train_images = option_find_str(options, "train", "data/train.list");
@@ -65,6 +74,11 @@
     //int N = plist->size;
     char **paths = (char **)list_to_array(plist);
 
+	int init_w = net.w;
+	int init_h = net.h;
+	int iter_save;
+	iter_save = get_current_batch(net);
+
     load_args args = {0};
     args.w = net.w;
     args.h = net.h;
@@ -74,15 +88,25 @@
     args.classes = classes;
     args.jitter = jitter;
     args.num_boxes = l.max_boxes;
+	args.small_object = l.small_object;
     args.d = &buffer;
     args.type = DETECTION_DATA;
-    args.threads = 8;
+	args.threads = 64;	// 8
 
     args.angle = net.angle;
     args.exposure = net.exposure;
     args.saturation = net.saturation;
     args.hue = net.hue;
 
+#ifdef OPENCV
+	IplImage* img = NULL;
+	float max_img_loss = 5;
+	int number_of_lines = 100;
+	int img_size = 1000;
+	if (!dont_show)
+		img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size);
+#endif	//OPENCV
+
     pthread_t load_thread = load_data(args);
     clock_t time;
     int count = 0;
@@ -90,8 +114,8 @@
     while(get_current_batch(net) < net.max_batches){
 		if(l.random && count++%10 == 0){
             printf("Resizing\n");
-            int dim = (rand() % 10 + 10) * 32;
-            if (get_current_batch(net)+100 > net.max_batches) dim = 544;
+			int dim = (rand() % 12 + (init_w/32 - 5)) * 32;	// +-160
+            //if (get_current_batch(net)+100 > net.max_batches) dim = 544;
             //int dim = (rand() % 4 + 16) * 32;
             printf("%d\n", dim);
             args.w = dim;
@@ -147,7 +171,16 @@
 
         i = get_current_batch(net);
         printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
-		if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) {
+
+#ifdef OPENCV
+		if(!dont_show)
+			draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches);
+#endif	// OPENCV
+
+		//if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) {
+		//if (i % 100 == 0) {
+		if(i >= (iter_save + 100)) {
+			iter_save = i;
 #ifdef GPU
 			if (ngpus != 1) sync_nets(nets, ngpus, 0);
 #endif
@@ -163,6 +196,9 @@
     char buff[256];
     sprintf(buff, "%s/%s_final.weights", backup_directory, base);
     save_weights(net, buff);
+
+	//cvReleaseImage(&img);
+	//cvDestroyAllWindows();
 }
 
 
@@ -234,8 +270,8 @@
         if (ymax > h) ymax = h;
 
         for(j = 0; j < classes; ++j){
-            int class = j;
-            if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class],
+            int class_id = j;
+            if (probs[i][class_id]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class_id],
                     xmin, ymin, xmax, ymax);
         }
     }
@@ -253,7 +289,7 @@
     int *map = 0;
     if (mapf) map = read_map(mapf);
 
-    network net = parse_network_cfg(cfgfile);
+    network net = parse_network_cfg_custom(cfgfile, 1);
     if(weightfile){
         load_weights(&net, weightfile);
     }
@@ -304,6 +340,8 @@
     float thresh = .005;
     float nms = .45;
 
+	int detection_count = 0;
+
     int nthreads = 4;
     image *val = calloc(nthreads, sizeof(image));
     image *val_resized = calloc(nthreads, sizeof(image));
@@ -345,6 +383,15 @@
             int h = val[t].h;
             get_region_boxes(l, w, h, thresh, probs, boxes, 0, map);
             if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
+
+			int x, y;
+			for (x = 0; x < (l.w*l.h*l.n); ++x) {
+				for (y = 0; y < classes; ++y) 
+				{
+					if (probs[x][y]) ++detection_count;
+				}
+			}
+
             if (coco){
                 print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
             } else if (imagenet){
@@ -365,12 +412,13 @@
         fprintf(fp, "\n]\n");
         fclose(fp);
     }
+	printf("\n detection_count = %d \n", detection_count);
     fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
 void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)
 {
-    network net = parse_network_cfg(cfgfile);
+    network net = parse_network_cfg_custom(cfgfile, 1);
     if(weightfile){
         load_weights(&net, weightfile);
     }
@@ -394,10 +442,12 @@
     int m = plist->size;
     int i=0;
 
-	float thresh = .2;// .001;
+	float thresh = .001;// .001;	// .2;
     float iou_thresh = .5;
     float nms = .4;
 
+	int detection_count = 0, truth_count = 0;
+
     int total = 0;
     int correct = 0;
     int proposals = 0;
@@ -421,6 +471,7 @@
 
         int num_labels = 0;
         box_label *truth = read_boxes(labelpath, &num_labels);
+		truth_count += num_labels;
         for(k = 0; k < l.w*l.h*l.n; ++k){
             if(probs[k][0] > thresh){
                 ++proposals;
@@ -447,16 +498,516 @@
         free_image(orig);
         free_image(sized);
     }
+	printf("\n truth_count = %d \n", truth_count);
 }
 
-void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh)
+typedef struct {
+	box b;
+	float p;
+	int class_id;
+	int image_index;
+	int truth_flag;
+	int unique_truth_index;
+} box_prob;
+
+int detections_comparator(const void *pa, const void *pb)
+{
+	box_prob a = *(box_prob *)pa;
+	box_prob b = *(box_prob *)pb;
+	float diff = a.p - b.p;
+	if (diff < 0) return 1;
+	else if (diff > 0) return -1;
+	return 0;
+}
+
+void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou)
+{
+	int j;
+	list *options = read_data_cfg(datacfg);
+	char *valid_images = option_find_str(options, "valid", "data/train.txt");
+	char *difficult_valid_images = option_find_str(options, "difficult", NULL);
+	char *name_list = option_find_str(options, "names", "data/names.list");
+	char **names = get_labels(name_list);
+	char *mapf = option_find_str(options, "map", 0);
+	int *map = 0;
+	if (mapf) map = read_map(mapf);
+
+	network net = parse_network_cfg_custom(cfgfile, 1);
+	if (weightfile) {
+		load_weights(&net, weightfile);
+	}
+	set_batch_network(&net, 1);
+	fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+	srand(time(0));
+
+	list *plist = get_paths(valid_images);
+	char **paths = (char **)list_to_array(plist);
+
+	char **paths_dif = NULL;
+	if (difficult_valid_images) {
+		list *plist_dif = get_paths(difficult_valid_images);
+		paths_dif = (char **)list_to_array(plist_dif);
+	}
+	
+
+	layer l = net.layers[net.n - 1];
+	int classes = l.classes;
+
+	box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+	float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+	for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+
+	int m = plist->size;
+	int i = 0;
+	int t;
+
+	const float thresh = .005;
+	const float nms = .45;
+	const float iou_thresh = 0.5;
+
+	int nthreads = 4;
+	image *val = calloc(nthreads, sizeof(image));
+	image *val_resized = calloc(nthreads, sizeof(image));
+	image *buf = calloc(nthreads, sizeof(image));
+	image *buf_resized = calloc(nthreads, sizeof(image));
+	pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
+
+	load_args args = { 0 };
+	args.w = net.w;
+	args.h = net.h;
+	args.type = IMAGE_DATA;
+
+	//const float thresh_calc_avg_iou = 0.24;
+	float avg_iou = 0;
+	int tp_for_thresh = 0;
+	int fp_for_thresh = 0;
+
+	box_prob *detections = calloc(1, sizeof(box_prob));
+	int detections_count = 0;
+	int unique_truth_count = 0;
+
+	int *truth_classes_count = calloc(classes, sizeof(int));
+
+	for (t = 0; t < nthreads; ++t) {
+		args.path = paths[i + t];
+		args.im = &buf[t];
+		args.resized = &buf_resized[t];
+		thr[t] = load_data_in_thread(args);
+	}
+	time_t start = time(0);
+	for (i = nthreads; i < m + nthreads; i += nthreads) {
+		fprintf(stderr, "%d\n", i);
+		for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+			pthread_join(thr[t], 0);
+			val[t] = buf[t];
+			val_resized[t] = buf_resized[t];
+		}
+		for (t = 0; t < nthreads && i + t < m; ++t) {
+			args.path = paths[i + t];
+			args.im = &buf[t];
+			args.resized = &buf_resized[t];
+			thr[t] = load_data_in_thread(args);
+		}
+		for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
+			const int image_index = i + t - nthreads;
+			char *path = paths[image_index];
+			char *id = basecfg(path);
+			float *X = val_resized[t].data;
+			network_predict(net, X);
+			get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
+			if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
+
+			char labelpath[4096];
+			find_replace(path, "images", "labels", labelpath);
+			find_replace(labelpath, "JPEGImages", "labels", labelpath);
+			find_replace(labelpath, ".jpg", ".txt", labelpath);
+			find_replace(labelpath, ".JPEG", ".txt", labelpath);
+			find_replace(labelpath, ".png", ".txt", labelpath);
+			int num_labels = 0;
+			box_label *truth = read_boxes(labelpath, &num_labels);
+			int i, j;
+			for (j = 0; j < num_labels; ++j) {
+				truth_classes_count[truth[j].id]++;
+			}
+
+			// difficult
+			box_label *truth_dif = NULL;
+			int num_labels_dif = 0;
+			if (paths_dif)
+			{
+				char *path_dif = paths_dif[image_index];
+
+				char labelpath_dif[4096];
+				find_replace(path_dif, "images", "labels", labelpath_dif);
+				find_replace(labelpath_dif, "JPEGImages", "labels", labelpath_dif);
+				find_replace(labelpath_dif, ".jpg", ".txt", labelpath_dif);
+				find_replace(labelpath_dif, ".JPEG", ".txt", labelpath_dif);
+				find_replace(labelpath_dif, ".png", ".txt", labelpath_dif);				
+				truth_dif = read_boxes(labelpath_dif, &num_labels_dif);
+			}
+
+			for (i = 0; i < (l.w*l.h*l.n); ++i) {
+
+				int class_id;
+				for (class_id = 0; class_id < classes; ++class_id) {
+					float prob = probs[i][class_id];
+					if (prob > 0) {
+						detections_count++;
+						detections = realloc(detections, detections_count * sizeof(box_prob));
+						detections[detections_count - 1].b = boxes[i];
+						detections[detections_count - 1].p = prob;
+						detections[detections_count - 1].image_index = image_index;
+						detections[detections_count - 1].class_id = class_id;
+						detections[detections_count - 1].truth_flag = 0;
+						detections[detections_count - 1].unique_truth_index = -1;
+
+						int truth_index = -1;
+						float max_iou = 0;
+						for (j = 0; j < num_labels; ++j)
+						{
+							box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
+							//printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n", 
+							//	box_iou(boxes[i], t), prob, class_id, truth[j].id);
+							float current_iou = box_iou(boxes[i], t);
+							if (current_iou > iou_thresh && class_id == truth[j].id) {
+								if (current_iou > max_iou) {
+									max_iou = current_iou;
+									truth_index = unique_truth_count + j;
+								}
+							}
+						}
+
+						// best IoU
+						if (truth_index > -1) {
+							detections[detections_count - 1].truth_flag = 1;
+							detections[detections_count - 1].unique_truth_index = truth_index;
+						}
+						else {
+							// if object is difficult then remove detection
+							for (j = 0; j < num_labels_dif; ++j) {
+								box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h };
+								float current_iou = box_iou(boxes[i], t);
+								if (current_iou > iou_thresh && class_id == truth_dif[j].id) {
+									--detections_count;
+									break;
+								}
+							}
+						}
+
+						// calc avg IoU, true-positives, false-positives for required Threshold
+						if (prob > thresh_calc_avg_iou) {
+							if (truth_index > -1) {
+								avg_iou += max_iou;
+								++tp_for_thresh;
+							}
+							else
+								fp_for_thresh++;
+						}
+					}
+				}
+			}
+			
+			unique_truth_count += num_labels;
+
+			free(id);
+			free_image(val[t]);
+			free_image(val_resized[t]);
+		}
+	}
+
+	avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh);
+
+	
+	// SORT(detections)
+	qsort(detections, detections_count, sizeof(box_prob), detections_comparator);
+	
+	typedef struct {
+		double precision;
+		double recall;
+		int tp, fp, fn;
+	} pr_t;
+
+	// for PR-curve
+	pr_t **pr = calloc(classes, sizeof(pr_t*));
+	for (i = 0; i < classes; ++i) {
+		pr[i] = calloc(detections_count, sizeof(pr_t));
+	}
+	printf("detections_count = %d, unique_truth_count = %d  \n", detections_count, unique_truth_count);
+
+
+	int *truth_flags = calloc(unique_truth_count, sizeof(int));
+
+	int rank;
+	for (rank = 0; rank < detections_count; ++rank) {
+		if(rank % 100 == 0)
+			printf(" rank = %d of ranks = %d \r", rank, detections_count);
+
+		if (rank > 0) {
+			int class_id;
+			for (class_id = 0; class_id < classes; ++class_id) {
+				pr[class_id][rank].tp = pr[class_id][rank - 1].tp;
+				pr[class_id][rank].fp = pr[class_id][rank - 1].fp;
+			}
+		}
+
+		box_prob d = detections[rank];
+		// if (detected && isn't detected before)
+		if (d.truth_flag == 1) {
+			if (truth_flags[d.unique_truth_index] == 0) 
+			{
+				truth_flags[d.unique_truth_index] = 1;
+				pr[d.class_id][rank].tp++;	// true-positive
+			}
+		}
+		else {
+			pr[d.class_id][rank].fp++;	// false-positive
+		}
+
+		for (i = 0; i < classes; ++i) 
+		{
+			const int tp = pr[i][rank].tp;
+			const int fp = pr[i][rank].fp;
+			const int fn = truth_classes_count[i] - tp;	// false-negative = objects - true-positive
+			pr[i][rank].fn = fn;
+
+			if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp);
+			else pr[i][rank].precision = 0;
+
+			if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn);
+			else pr[i][rank].recall = 0;
+		}
+	}
+
+	free(truth_flags);
+	
+	
+	double mean_average_precision = 0;
+
+	for (i = 0; i < classes; ++i) {
+		double avg_precision = 0;
+		int point;
+		for (point = 0; point < 11; ++point) {
+			double cur_recall = point * 0.1;
+			double cur_precision = 0;
+			for (rank = 0; rank < detections_count; ++rank)
+			{
+				if (pr[i][rank].recall >= cur_recall) {	// > or >=
+					if (pr[i][rank].precision > cur_precision) {
+						cur_precision = pr[i][rank].precision;
+					}
+				}
+			}
+			//printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision);
+
+			avg_precision += cur_precision;
+		}
+		avg_precision = avg_precision / 11;
+		printf("class_id = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100);
+		mean_average_precision += avg_precision;
+	}
+	
+	const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh);
+	const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh));
+	const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall);
+	printf(" for thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n",
+		thresh_calc_avg_iou, cur_precision, cur_recall, f1_score);
+
+	printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", 
+		thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100);
+
+	mean_average_precision = mean_average_precision / classes;
+	printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100);
+
+
+	for (i = 0; i < classes; ++i) {
+		free(pr[i]);
+	}
+	free(pr);
+	free(detections);
+	free(truth_classes_count);
+
+	fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
+}
+
+#ifdef OPENCV
+void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show)
+{
+	printf("\n num_of_clusters = %d, final_width = %d, final_height = %d \n", num_of_clusters, final_width, final_height);
+
+	//float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
+	float *rel_width_height_array = calloc(1000, sizeof(float));
+
+	list *options = read_data_cfg(datacfg);
+	char *train_images = option_find_str(options, "train", "data/train.list");
+	list *plist = get_paths(train_images);
+	int number_of_images = plist->size;
+	char **paths = (char **)list_to_array(plist);
+
+	int number_of_boxes = 0;
+	printf(" read labels from %d images \n", number_of_images);
+
+	int i, j;
+	for (i = 0; i < number_of_images; ++i) {
+		char *path = paths[i];
+		char labelpath[4096];
+		find_replace(path, "images", "labels", labelpath);
+		find_replace(labelpath, "JPEGImages", "labels", labelpath);
+		find_replace(labelpath, ".jpg", ".txt", labelpath);
+		find_replace(labelpath, ".JPEG", ".txt", labelpath);
+		find_replace(labelpath, ".png", ".txt", labelpath);
+		int num_labels = 0;
+		box_label *truth = read_boxes(labelpath, &num_labels);
+		//printf(" new path: %s \n", labelpath);
+		for (j = 0; j < num_labels; ++j)
+		{
+			number_of_boxes++;
+			rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float));
+			rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * final_width;
+			rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * final_height;
+			printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes);
+		}
+	}
+	printf("\n all loaded. \n");
+
+	CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1);
+	CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1);
+	CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1);
+
+	for (i = 0; i < number_of_boxes; ++i) {
+		points->data.fl[i * 2] = rel_width_height_array[i * 2];
+		points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1];
+		//cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0));
+		//cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0));
+	}
+
+
+	const int attemps = 10;
+	double compactness;
+
+	enum {
+		KMEANS_RANDOM_CENTERS = 0,
+		KMEANS_USE_INITIAL_LABELS = 1,
+		KMEANS_PP_CENTERS = 2
+	};
+	
+	printf("\n calculating k-means++ ...");
+	// Should be used: distance(box, centroid) = 1 - IoU(box, centroid)
+	cvKMeans2(points, num_of_clusters, labels, 
+		cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10000, 0), attemps, 
+		0, KMEANS_PP_CENTERS,
+		centers, &compactness);
+	
+	//orig 2.0 anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
+	//float orig_anch[] = { 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52 };
+	// worse than ours (even for 19x19 final size - for input size 608x608)
+
+	//orig anchors = 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071
+	//float orig_anch[] = { 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 };
+	// orig (IoU=59.90%) better than ours (59.75%)
+
+	//gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66
+	//float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 };
+
+	// ours: anchors = 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595
+	//float orig_anch[] = { 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 };
+	//for (i = 0; i < num_of_clusters * 2; ++i) centers->data.fl[i] = orig_anch[i];
+	
+	//for (i = 0; i < number_of_boxes; ++i)
+	//	printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]);
+
+	float avg_iou = 0;
+	for (i = 0; i < number_of_boxes; ++i) {
+		float box_w = points->data.fl[i * 2];
+		float box_h = points->data.fl[i * 2 + 1];
+		//int cluster_idx = labels->data.i[i];		
+		int cluster_idx = 0;
+		float min_dist = FLT_MAX;
+		for (j = 0; j < num_of_clusters; ++j) {
+			float anchor_w = centers->data.fl[j * 2];
+			float anchor_h = centers->data.fl[j * 2 + 1];
+			float w_diff = anchor_w - box_w;
+			float h_diff = anchor_h - box_h;
+			float distance = sqrt(w_diff*w_diff + h_diff*h_diff);
+			if (distance < min_dist) min_dist = distance, cluster_idx = j;
+		}
+		
+		float anchor_w = centers->data.fl[cluster_idx * 2];
+		float anchor_h = centers->data.fl[cluster_idx * 2 + 1];
+		float min_w = (box_w < anchor_w) ? box_w : anchor_w;
+		float min_h = (box_h < anchor_h) ? box_h : anchor_h;
+		float box_intersect = min_w*min_h;
+		float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect;
+		float iou = box_intersect / box_union;
+		if (iou > 1 || iou < 0) {
+			printf(" i = %d, box_w = %d, box_h = %d, anchor_w = %d, anchor_h = %d, iou = %f \n",
+				i, box_w, box_h, anchor_w, anchor_h, iou);
+		}
+		else avg_iou += iou;
+	}
+	avg_iou = 100 * avg_iou / number_of_boxes;
+	printf("\n avg IoU = %2.2f %% \n", avg_iou);
+
+	char buff[1024];
+	FILE* fw = fopen("anchors.txt", "wb");
+	printf("\nSaving anchors to the file: anchors.txt \n");
+	printf("anchors = ");
+	for (i = 0; i < num_of_clusters; ++i) {
+		sprintf(buff, "%2.4f,%2.4f", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]);
+		printf("%s, ", buff);
+		fwrite(buff, sizeof(char), strlen(buff), fw);
+		if (i + 1 < num_of_clusters) fwrite(", ", sizeof(char), 2, fw);;
+	}
+	printf("\n");
+	fclose(fw);
+
+	if (show) {
+		size_t img_size = 700;
+		IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3);
+		cvZero(img);
+		for (j = 0; j < num_of_clusters; ++j) {
+			CvPoint pt1, pt2;
+			pt1.x = pt1.y = 0;
+			pt2.x = centers->data.fl[j * 2] * img_size / final_width;
+			pt2.y = centers->data.fl[j * 2 + 1] * img_size / final_height;
+			cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), 1, 8, 0);
+		}
+
+		for (i = 0; i < number_of_boxes; ++i) {
+			CvPoint pt;
+			pt.x = points->data.fl[i * 2] * img_size / final_width;
+			pt.y = points->data.fl[i * 2 + 1] * img_size / final_height;
+			int cluster_idx = labels->data.i[i];
+			int red_id = (cluster_idx * (uint64_t)123 + 55) % 255;
+			int green_id = (cluster_idx * (uint64_t)321 + 33) % 255;
+			int blue_id = (cluster_idx * (uint64_t)11 + 99) % 255;
+			cvCircle(img, pt, 1, CV_RGB(red_id, green_id, blue_id), CV_FILLED, 8, 0);
+			//if(pt.x > img_size || pt.y > img_size) printf("\n pt.x = %d, pt.y = %d \n", pt.x, pt.y);
+		}
+		cvShowImage("clusters", img);
+		cvWaitKey(0);
+		cvReleaseImage(&img);
+		cvDestroyAllWindows();
+	}
+
+	free(rel_width_height_array);
+	cvReleaseMat(&points);
+	cvReleaseMat(&centers);
+	cvReleaseMat(&labels);
+}
+#else
+void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show) {
+	printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n");
+}
+#endif // OPENCV
+
+void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, int dont_show)
 {
     list *options = read_data_cfg(datacfg);
     char *name_list = option_find_str(options, "names", "data/names.list");
     char **names = get_labels(name_list);
 
     image **alphabet = load_alphabet();
-    network net = parse_network_cfg(cfgfile);
+    network net = parse_network_cfg_custom(cfgfile, 1);
     if(weightfile){
         load_weights(&net, weightfile);
     }
@@ -466,10 +1017,11 @@
     char buff[256];
     char *input = buff;
     int j;
-    float nms=.4;
+    float nms=.45;	// 0.4F
     while(1){
         if(filename){
             strncpy(input, filename, 256);
+			if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0;
         } else {
             printf("Enter Image Path: ");
             fflush(stdout);
@@ -478,30 +1030,41 @@
             strtok(input, "\n");
         }
         image im = load_image_color(input,0,0);
+		int letter = 0;
         image sized = resize_image(im, net.w, net.h);
+		//image sized = letterbox_image(im, net.w, net.h); letter = 1;
         layer l = net.layers[net.n-1];
 
-        box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
-        float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
-        for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
+        //box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+        //float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+        //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
 
         float *X = sized.data;
         time=clock();
         network_predict(net, X);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
-        get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0);
-        if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
-        draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
+        //get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0);
+		// if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
+		//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
+		int nboxes = 0;
+		detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letter);
+		if (nms) do_nms_sort_v3(dets, nboxes, l.classes, nms);
+		draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes);
+		free_detections(dets, nboxes);
         save_image(im, "predictions");
-        show_image(im, "predictions");
+		if (!dont_show) {
+			show_image(im, "predictions");
+		}
 
         free_image(im);
         free_image(sized);
-        free(boxes);
-        free_ptrs((void **)probs, l.w*l.h*l.n);
+        //free(boxes);
+        //free_ptrs((void **)probs, l.w*l.h*l.n);
 #ifdef OPENCV
-        cvWaitKey(0);
-        cvDestroyAllWindows();
+		if (!dont_show) {
+			cvWaitKey(0);
+			cvDestroyAllWindows();
+		}
 #endif
         if (filename) break;
     }
@@ -509,11 +1072,18 @@
 
 void run_detector(int argc, char **argv)
 {
+	int dont_show = find_arg(argc, argv, "-dont_show");
+	int show = find_arg(argc, argv, "-show");
+	int http_stream_port = find_int_arg(argc, argv, "-http_port", -1);
 	char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
     char *prefix = find_char_arg(argc, argv, "-prefix", 0);
-    float thresh = find_float_arg(argc, argv, "-thresh", .24);
+    float thresh = find_float_arg(argc, argv, "-thresh", .25);	// 0.24
+	float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
     int cam_index = find_int_arg(argc, argv, "-c", 0);
     int frame_skip = find_int_arg(argc, argv, "-s", 0);
+	int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
+	int final_width = find_int_arg(argc, argv, "-final_width", 13);
+	int final_heigh = find_int_arg(argc, argv, "-final_heigh", 13);
     if(argc < 4){
         fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
         return;
@@ -546,16 +1116,23 @@
     char *datacfg = argv[3];
     char *cfg = argv[4];
     char *weights = (argc > 5) ? argv[5] : 0;
+	if(weights)
+		if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0;
     char *filename = (argc > 6) ? argv[6]: 0;
-    if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh);
-    else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
+    if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show);
+    else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show);
     else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
     else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
+	else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh);
+	else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh, show);
     else if(0==strcmp(argv[2], "demo")) {
         list *options = read_data_cfg(datacfg);
         int classes = option_find_int(options, "classes", 20);
         char *name_list = option_find_str(options, "names", "data/names.list");
         char **names = get_labels(name_list);
-        demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename);
+		if(filename)
+			if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0;
+        demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename,
+			http_stream_port, dont_show);
     }
 }

--
Gitblit v1.10.0