From d41fbf638e070d9fcf26a4c55a58fc1d015179c5 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 11 Jun 2015 18:04:48 +0000
Subject: [PATCH] stuff
---
src/detection_layer.c | 388 +++++++++++++++++++++++++++++-------------------------
1 files changed, 207 insertions(+), 181 deletions(-)
diff --git a/src/detection_layer.c b/src/detection_layer.c
index 7eaabb4..c628f18 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -8,63 +8,44 @@
#include <string.h>
#include <stdlib.h>
-int get_detection_layer_locations(detection_layer layer)
+int get_detection_layer_locations(detection_layer l)
{
- return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background);
+ return l.inputs / (l.classes+l.coords+l.joint+(l.background || l.objectness));
}
-int get_detection_layer_output_size(detection_layer layer)
+int get_detection_layer_output_size(detection_layer l)
{
- return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
+ return get_detection_layer_locations(l)*((l.background || l.objectness) + l.classes + l.coords);
}
-detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
+detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int joint, int rescore, int background, int objectness)
{
- detection_layer *layer = calloc(1, sizeof(detection_layer));
+ detection_layer l = {0};
+ l.type = DETECTION;
- layer->batch = batch;
- layer->inputs = inputs;
- layer->classes = classes;
- layer->coords = coords;
- layer->rescore = rescore;
- layer->nuisance = nuisance;
- layer->cost = calloc(1, sizeof(float));
- layer->does_cost=1;
- layer->background = background;
- int outputs = get_detection_layer_output_size(*layer);
- layer->output = calloc(batch*outputs, sizeof(float));
- layer->delta = calloc(batch*outputs, sizeof(float));
+ l.batch = batch;
+ l.inputs = inputs;
+ l.classes = classes;
+ l.coords = coords;
+ l.rescore = rescore;
+ l.objectness = objectness;
+ l.joint = joint;
+ l.cost = calloc(1, sizeof(float));
+ l.does_cost=1;
+ l.background = background;
+ int outputs = get_detection_layer_output_size(l);
+ l.outputs = outputs;
+ l.output = calloc(batch*outputs, sizeof(float));
+ l.delta = calloc(batch*outputs, sizeof(float));
#ifdef GPU
- layer->output_gpu = cuda_make_array(0, batch*outputs);
- layer->delta_gpu = cuda_make_array(0, batch*outputs);
+ l.output_gpu = cuda_make_array(0, batch*outputs);
+ l.delta_gpu = cuda_make_array(0, batch*outputs);
#endif
fprintf(stderr, "Detection Layer\n");
srand(0);
- return layer;
-}
-
-void dark_zone(detection_layer layer, int class, int start, network_state state)
-{
- int index = start+layer.background+class;
- int size = layer.classes+layer.coords+layer.background;
- int location = (index%(7*7*size)) / size ;
- int r = location / 7;
- int c = location % 7;
- int dr, dc;
- for(dr = -1; dr <= 1; ++dr){
- for(dc = -1; dc <= 1; ++dc){
- if(!(dr || dc)) continue;
- if((r + dr) > 6 || (r + dr) < 0) continue;
- if((c + dc) > 6 || (c + dc) < 0) continue;
- int di = (dr*7 + dc) * size;
- if(state.truth[index+di]) continue;
- layer.output[index + di] = 0;
- //if(!state.truth[start+di]) continue;
- //layer.output[start + di] = 1;
- }
- }
+ return l;
}
typedef struct{
@@ -165,28 +146,99 @@
di.dx = dover.dx*h;
di.dh = dover.dh*w;
di.dy = dover.dy*w;
- if(h < 0 || w < 0){
- di.dx = dover.dx;
- di.dy = dover.dy;
- }
+
return di;
}
dbox dunion(box a, box b)
{
- dbox du = {0,0,0,0};;
- float w = overlap(a.x, a.w, b.x, b.w);
- float h = overlap(a.y, a.h, b.y, b.h);
- if(w > 0 && h > 0){
- dbox di = dintersect(a, b);
- du.dw = h - di.dw;
- du.dh = w - di.dw;
- du.dx = -di.dx;
- du.dy = -di.dy;
- }
+ dbox du;
+
+ dbox di = dintersect(a, b);
+ du.dw = a.h - di.dw;
+ du.dh = a.w - di.dh;
+ du.dx = -di.dx;
+ du.dy = -di.dy;
+
return du;
}
+dbox diou(box a, box b);
+
+void test_dunion()
+{
+ box a = {0, 0, 1, 1};
+ box dxa= {0+.0001, 0, 1, 1};
+ box dya= {0, 0+.0001, 1, 1};
+ box dwa= {0, 0, 1+.0001, 1};
+ box dha= {0, 0, 1, 1+.0001};
+
+ box b = {.5, .5, .2, .2};
+ dbox di = dunion(a,b);
+ printf("Union: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh);
+ float inter = box_union(a, b);
+ float xinter = box_union(dxa, b);
+ float yinter = box_union(dya, b);
+ float winter = box_union(dwa, b);
+ float hinter = box_union(dha, b);
+ xinter = (xinter - inter)/(.0001);
+ yinter = (yinter - inter)/(.0001);
+ winter = (winter - inter)/(.0001);
+ hinter = (hinter - inter)/(.0001);
+ printf("Union Manual %f %f %f %f\n", xinter, yinter, winter, hinter);
+}
+void test_dintersect()
+{
+ box a = {0, 0, 1, 1};
+ box dxa= {0+.0001, 0, 1, 1};
+ box dya= {0, 0+.0001, 1, 1};
+ box dwa= {0, 0, 1+.0001, 1};
+ box dha= {0, 0, 1, 1+.0001};
+
+ box b = {.5, .5, .2, .2};
+ dbox di = dintersect(a,b);
+ printf("Inter: %f %f %f %f\n", di.dx, di.dy, di.dw, di.dh);
+ float inter = box_intersection(a, b);
+ float xinter = box_intersection(dxa, b);
+ float yinter = box_intersection(dya, b);
+ float winter = box_intersection(dwa, b);
+ float hinter = box_intersection(dha, b);
+ xinter = (xinter - inter)/(.0001);
+ yinter = (yinter - inter)/(.0001);
+ winter = (winter - inter)/(.0001);
+ hinter = (hinter - inter)/(.0001);
+ printf("Inter Manual %f %f %f %f\n", xinter, yinter, winter, hinter);
+}
+
+void test_box()
+{
+ test_dintersect();
+ test_dunion();
+ box a = {0, 0, 1, 1};
+ box dxa= {0+.00001, 0, 1, 1};
+ box dya= {0, 0+.00001, 1, 1};
+ box dwa= {0, 0, 1+.00001, 1};
+ box dha= {0, 0, 1, 1+.00001};
+
+ box b = {.5, 0, .2, .2};
+
+ float iou = box_iou(a,b);
+ iou = (1-iou)*(1-iou);
+ printf("%f\n", iou);
+ dbox d = diou(a, b);
+ printf("%f %f %f %f\n", d.dx, d.dy, d.dw, d.dh);
+
+ float xiou = box_iou(dxa, b);
+ float yiou = box_iou(dya, b);
+ float wiou = box_iou(dwa, b);
+ float hiou = box_iou(dha, b);
+ xiou = ((1-xiou)*(1-xiou) - iou)/(.00001);
+ yiou = ((1-yiou)*(1-yiou) - iou)/(.00001);
+ wiou = ((1-wiou)*(1-wiou) - iou)/(.00001);
+ hiou = ((1-hiou)*(1-hiou) - iou)/(.00001);
+ printf("manual %f %f %f %f\n", xiou, yiou, wiou, hiou);
+}
+
dbox diou(box a, box b)
{
float u = box_union(a,b);
@@ -194,13 +246,15 @@
dbox di = dintersect(a,b);
dbox du = dunion(a,b);
dbox dd = {0,0,0,0};
- if(i < 0) {
+
+ if(i <= 0 || 1) {
dd.dx = b.x - a.x;
dd.dy = b.y - a.y;
dd.dw = b.w - a.w;
dd.dh = b.h - a.h;
return dd;
}
+
dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u);
dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u);
dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u);
@@ -208,176 +262,148 @@
return dd;
}
-void test_box()
-{
- box a = {1, 1, 1, 1};
- box b = {0, 0, .5, .2};
- int count = 0;
- while(count++ < 300){
- dbox d = diou(a, b);
- printf("%f %f %f %f\n", a.x, a.y, a.w, a.h);
- a.x += .1*d.dx;
- a.w += .1*d.dw;
- a.y += .1*d.dy;
- a.h += .1*d.dh;
- printf("inter: %f\n", box_intersection(a, b));
- printf("union: %f\n", box_union(a, b));
- printf("IOU: %f\n", box_iou(a, b));
- if(d.dx==0 && d.dw==0 && d.dy==0 && d.dh==0) {
- printf("break!!!\n");
- break;
- }
- }
-}
-
-void forward_detection_layer(const detection_layer layer, network_state state)
+void forward_detection_layer(const detection_layer l, network_state state)
{
int in_i = 0;
int out_i = 0;
- int locations = get_detection_layer_locations(layer);
+ int locations = get_detection_layer_locations(l);
int i,j;
- for(i = 0; i < layer.batch*locations; ++i){
- int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
+ for(i = 0; i < l.batch*locations; ++i){
+ int mask = (!state.truth || state.truth[out_i + (l.background || l.objectness) + l.classes + 2]);
float scale = 1;
- if(layer.rescore) scale = state.input[in_i++];
- else if(layer.nuisance){
- layer.output[out_i++] = 1-state.input[in_i++];
+ if(l.joint) scale = state.input[in_i++];
+ else if(l.objectness){
+ l.output[out_i++] = 1-state.input[in_i++];
scale = mask;
}
- else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
+ else if(l.background) l.output[out_i++] = scale*state.input[in_i++];
- for(j = 0; j < layer.classes; ++j){
- layer.output[out_i++] = scale*state.input[in_i++];
+ for(j = 0; j < l.classes; ++j){
+ l.output[out_i++] = scale*state.input[in_i++];
}
- if(layer.nuisance){
-
- }else if(layer.background){
- softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
- activate_array(state.input+in_i, layer.coords, LOGISTIC);
+ if(l.objectness){
+
+ }else if(l.background){
+ softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background);
+ activate_array(state.input+in_i, l.coords, LOGISTIC);
}
- for(j = 0; j < layer.coords; ++j){
- layer.output[out_i++] = mask*state.input[in_i++];
+ for(j = 0; j < l.coords; ++j){
+ l.output[out_i++] = mask*state.input[in_i++];
}
}
- if(layer.does_cost){
- *(layer.cost) = 0;
- int size = get_detection_layer_output_size(layer) * layer.batch;
- memset(layer.delta, 0, size * sizeof(float));
- for(i = 0; i < layer.batch*locations; ++i){
- int classes = layer.nuisance+layer.classes;
- int offset = i*(classes+layer.coords);
- for(j = offset; j < offset+classes; ++j){
- *(layer.cost) += pow(state.truth[j] - layer.output[j], 2);
- layer.delta[j] = state.truth[j] - layer.output[j];
+ float avg_iou = 0;
+ int count = 0;
+ if(l.does_cost && state.train){
+ *(l.cost) = 0;
+ int size = get_detection_layer_output_size(l) * l.batch;
+ memset(l.delta, 0, size * sizeof(float));
+ for (i = 0; i < l.batch*locations; ++i) {
+ int classes = l.objectness+l.classes;
+ int offset = i*(classes+l.coords);
+ for (j = offset; j < offset+classes; ++j) {
+ *(l.cost) += pow(state.truth[j] - l.output[j], 2);
+ l.delta[j] = state.truth[j] - l.output[j];
}
+
box truth;
- truth.x = state.truth[j+0];
- truth.y = state.truth[j+1];
- truth.w = state.truth[j+2];
- truth.h = state.truth[j+3];
+ truth.x = state.truth[j+0]/7;
+ truth.y = state.truth[j+1]/7;
+ truth.w = pow(state.truth[j+2], 2);
+ truth.h = pow(state.truth[j+3], 2);
box out;
- out.x = layer.output[j+0];
- out.y = layer.output[j+1];
- out.w = layer.output[j+2];
- out.h = layer.output[j+3];
+ out.x = l.output[j+0]/7;
+ out.y = l.output[j+1]/7;
+ out.w = pow(l.output[j+2], 2);
+ out.h = pow(l.output[j+3], 2);
+
if(!(truth.w*truth.h)) continue;
- float iou = box_iou(truth, out);
- //printf("iou: %f\n", iou);
- *(layer.cost) += pow((1-iou), 2);
- dbox d = diou(out, truth);
- layer.delta[j+0] = d.dx;
- layer.delta[j+1] = d.dy;
- layer.delta[j+2] = d.dw;
- layer.delta[j+3] = d.dh;
+ float iou = box_iou(out, truth);
+ avg_iou += iou;
+ ++count;
+ dbox delta = diou(out, truth);
+
+ l.delta[j+0] = 10 * delta.dx/7;
+ l.delta[j+1] = 10 * delta.dy/7;
+ l.delta[j+2] = 10 * delta.dw * 2 * sqrt(out.w);
+ l.delta[j+3] = 10 * delta.dh * 2 * sqrt(out.h);
+
+
+ *(l.cost) += pow((1-iou), 2);
+ l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]);
+ l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]);
+ l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]);
+ l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]);
+ if(l.rescore){
+ for (j = offset; j < offset+classes; ++j) {
+ if(state.truth[j]) state.truth[j] = iou;
+ l.delta[j] = state.truth[j] - l.output[j];
+ }
+ }
}
+ printf("Avg IOU: %f\n", avg_iou/count);
}
- /*
- int count = 0;
- for(i = 0; i < layer.batch*locations; ++i){
- for(j = 0; j < layer.classes+layer.background; ++j){
- printf("%f, ", layer.output[count++]);
- }
- printf("\n");
- for(j = 0; j < layer.coords; ++j){
- printf("%f, ", layer.output[count++]);
- }
- printf("\n");
- }
- */
- /*
- if(layer.background || 1){
- for(i = 0; i < layer.batch*locations; ++i){
- int index = i*(layer.classes+layer.coords+layer.background);
- for(j= 0; j < layer.classes; ++j){
- if(state.truth[index+j+layer.background]){
-//dark_zone(layer, j, index, state);
-}
-}
-}
-}
- */
}
-void backward_detection_layer(const detection_layer layer, network_state state)
+void backward_detection_layer(const detection_layer l, network_state state)
{
- int locations = get_detection_layer_locations(layer);
+ int locations = get_detection_layer_locations(l);
int i,j;
int in_i = 0;
int out_i = 0;
- for(i = 0; i < layer.batch*locations; ++i){
+ for(i = 0; i < l.batch*locations; ++i){
float scale = 1;
float latent_delta = 0;
- if(layer.rescore) scale = state.input[in_i++];
- else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++];
- else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
- for(j = 0; j < layer.classes; ++j){
- latent_delta += state.input[in_i]*layer.delta[out_i];
- state.delta[in_i++] = scale*layer.delta[out_i++];
+ if(l.joint) scale = state.input[in_i++];
+ else if (l.objectness) state.delta[in_i++] = -l.delta[out_i++];
+ else if (l.background) state.delta[in_i++] = scale*l.delta[out_i++];
+ for(j = 0; j < l.classes; ++j){
+ latent_delta += state.input[in_i]*l.delta[out_i];
+ state.delta[in_i++] = scale*l.delta[out_i++];
}
- if (layer.nuisance) {
+ if (l.objectness) {
- }else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
- for(j = 0; j < layer.coords; ++j){
- state.delta[in_i++] = layer.delta[out_i++];
+ }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i);
+ for(j = 0; j < l.coords; ++j){
+ state.delta[in_i++] = l.delta[out_i++];
}
- if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta;
+ if(l.joint) state.delta[in_i-l.coords-l.classes-l.joint] = latent_delta;
}
}
#ifdef GPU
-void forward_detection_layer_gpu(const detection_layer layer, network_state state)
+void forward_detection_layer_gpu(const detection_layer l, network_state state)
{
- int outputs = get_detection_layer_output_size(layer);
- float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
+ int outputs = get_detection_layer_output_size(l);
+ float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){
- truth_cpu = calloc(layer.batch*outputs, sizeof(float));
- cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
+ truth_cpu = calloc(l.batch*outputs, sizeof(float));
+ cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
}
- cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
+ cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
network_state cpu_state;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
- forward_detection_layer(layer, cpu_state);
- cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
- cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
+ forward_detection_layer(l, cpu_state);
+ cuda_push_array(l.output_gpu, l.output, l.batch*outputs);
+ cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs);
free(cpu_state.input);
if(cpu_state.truth) free(cpu_state.truth);
}
-void backward_detection_layer_gpu(detection_layer layer, network_state state)
+void backward_detection_layer_gpu(detection_layer l, network_state state)
{
- int outputs = get_detection_layer_output_size(layer);
+ int outputs = get_detection_layer_output_size(l);
- float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
- float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
+ float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
+ float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){
- truth_cpu = calloc(layer.batch*outputs, sizeof(float));
- cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
+ truth_cpu = calloc(l.batch*outputs, sizeof(float));
+ cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
}
network_state cpu_state;
cpu_state.train = state.train;
@@ -385,10 +411,10 @@
cpu_state.truth = truth_cpu;
cpu_state.delta = delta_cpu;
- cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
- cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
- backward_detection_layer(layer, cpu_state);
- cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
+ cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
+ cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs);
+ backward_detection_layer(l, cpu_state);
+ cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs);
free(in_cpu);
free(delta_cpu);
--
Gitblit v1.10.0