From d6fbe86e7a8c1bc389902c90c57ee7e80f5475b9 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 16 Dec 2014 19:40:05 +0000
Subject: [PATCH] updates?

---
 src/network.c |  258 +++++++++++++++++++++++++++------------------------
 1 files changed, 138 insertions(+), 120 deletions(-)

diff --git a/src/network.c b/src/network.c
index 5833166..f451fd9 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,4 +1,5 @@
 #include <stdio.h>
+#include <time.h>
 #include "network.h"
 #include "image.h"
 #include "data.h"
@@ -24,122 +25,12 @@
     net.outputs = 0;
     net.output = 0;
     #ifdef GPU
-    net.input_cl = 0;
+    net.input_cl = calloc(1, sizeof(cl_mem));
+    net.truth_cl = calloc(1, sizeof(cl_mem));
     #endif
     return net;
 }
 
-#ifdef GPU
-void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
-{
-    int i;
-    for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer_gpu(layer, input);
-            input = layer.output_cl;
-        }
-        else if(net.types[i] == COST){
-            cost_layer layer = *(cost_layer *)net.layers[i];
-            forward_cost_layer_gpu(layer, input, truth);
-        }
-        /*
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input, train);
-            input = layer.output;
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == CROP){
-            crop_layer layer = *(crop_layer *)net.layers[i];
-            forward_crop_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == NORMALIZATION){
-            normalization_layer layer = *(normalization_layer *)net.layers[i];
-            forward_normalization_layer(layer, input);
-            input = layer.output;
-        }
-        */
-    }
-}
-
-void backward_network_gpu(network net, cl_mem input)
-{
-    int i;
-    cl_mem prev_input;
-    cl_mem prev_delta;
-    for(i = net.n-1; i >= 0; --i){
-        if(i == 0){
-            prev_input = input;
-            prev_delta = 0;
-        }else{
-            prev_input = get_network_output_cl_layer(net, i-1);
-            prev_delta = get_network_delta_cl_layer(net, i-1);
-        }
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            backward_convolutional_layer_gpu(layer, prev_delta);
-        }
-        else if(net.types[i] == COST){
-            cost_layer layer = *(cost_layer *)net.layers[i];
-            backward_cost_layer_gpu(layer, prev_input, prev_delta);
-        }
-    }
-}
-
-void update_network_gpu(network net)
-{
-    int i;
-    for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer_gpu(layer);
-        }
-        else if(net.types[i] == MAXPOOL){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == SOFTMAX){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == NORMALIZATION){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer);
-        }
-    }
-}
-
-cl_mem get_network_output_cl_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output_cl;
-    }
-    return 0;
-}
-
-cl_mem get_network_delta_cl_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.delta_cl;
-    }
-    return 0;
-}
-
-#endif
 
 void forward_network(network net, float *input, float *truth, int train)
 {
@@ -229,9 +120,14 @@
         return layer.output;
     } else if(net.types[i] == DROPOUT){
         return get_network_output_layer(net, i-1);
+    } else if(net.types[i] == FREEWEIGHT){
+        return get_network_output_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *)net.layers[i];
+        return layer.output;
     } else if(net.types[i] == NORMALIZATION){
         normalization_layer layer = *(normalization_layer *)net.layers[i];
         return layer.output;
@@ -258,6 +154,8 @@
         return layer.delta;
     } else if(net.types[i] == DROPOUT){
         return get_network_delta_layer(net, i-1);
+    } else if(net.types[i] == FREEWEIGHT){
+        return get_network_delta_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta;
@@ -318,11 +216,15 @@
         }
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            backward_convolutional_layer(layer, prev_delta);
+            backward_convolutional_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_maxpool_layer(layer, prev_delta);
+        }
+        else if(net.types[i] == DROPOUT){
+            dropout_layer layer = *(dropout_layer *)net.layers[i];
+            backward_dropout_layer(layer, prev_delta);
         }
         else if(net.types[i] == NORMALIZATION){
             normalization_layer layer = *(normalization_layer *)net.layers[i];
@@ -330,7 +232,7 @@
         }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
-            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_softmax_layer(layer, prev_delta);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
@@ -343,6 +245,9 @@
     }
 }
 
+
+
+
 float train_network_datum(network net, float *x, float *y)
 {
     forward_network(net, x, y, 1);
@@ -363,7 +268,7 @@
     int i;
     float sum = 0;
     for(i = 0; i < n; ++i){
-        get_batch(d, batch, X, y);
+        get_random_batch(d, batch, X, y);
         float err = train_network_datum(net, X, y);
         sum += err;
     }
@@ -371,6 +276,7 @@
     free(y);
     return (float)sum/(n*batch);
 }
+
 float train_network_batch(network net, data d, int n)
 {
     int i,j;
@@ -390,6 +296,23 @@
     return (float)sum/(n*batch);
 }
 
+float train_network_data_cpu(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
 
 void train_network(network net, data d)
 {
@@ -407,6 +330,65 @@
     fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
 }
 
+void set_learning_network(network *net, float rate, float momentum, float decay)
+{
+    int i;
+    net->learning_rate=rate;
+    net->momentum = momentum;
+    net->decay = decay;
+    for(i = 0; i < net->n; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
+            layer->learning_rate=rate;
+            layer->momentum = momentum;
+            layer->decay = decay;
+        }
+        else if(net->types[i] == CONNECTED){
+            connected_layer *layer = (connected_layer *)net->layers[i];
+            layer->learning_rate=rate;
+            layer->momentum = momentum;
+            layer->decay = decay;
+        }
+    }
+}
+
+
+void set_batch_network(network *net, int b)
+{
+    net->batch = b;
+    int i;
+    for(i = 0; i < net->n; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == MAXPOOL){
+            maxpool_layer *layer = (maxpool_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == CONNECTED){
+            connected_layer *layer = (connected_layer *)net->layers[i];
+            layer->batch = b;
+        } else if(net->types[i] == DROPOUT){
+            dropout_layer *layer = (dropout_layer *) net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == FREEWEIGHT){
+            freeweight_layer *layer = (freeweight_layer *) net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == SOFTMAX){
+            softmax_layer *layer = (softmax_layer *)net->layers[i];
+            layer->batch = b;
+        }
+        else if(net->types[i] == COST){
+            cost_layer *layer = (cost_layer *)net->layers[i];
+            layer->batch = b;
+        }
+    }
+}
+
+
 int get_network_input_size_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
@@ -423,11 +405,19 @@
     } else if(net.types[i] == DROPOUT){
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
+    } else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *) net.layers[i];
+        return layer.c*layer.h*layer.w;
+    }
+    else if(net.types[i] == FREEWEIGHT){
+        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
+        return layer.inputs;
     }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
     }
+    printf("Can't find input size\n");
     return 0;
 }
 
@@ -443,6 +433,10 @@
         image output = get_maxpool_image(layer);
         return output.h*output.w*output.c;
     }
+     else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *) net.layers[i];
+        return layer.c*layer.crop_height*layer.crop_width;
+    }
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
@@ -451,10 +445,15 @@
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
     }
+    else if(net.types[i] == FREEWEIGHT){
+        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
+        return layer.inputs;
+    }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
     }
+    printf("Can't find output size\n");
     return 0;
 }
 
@@ -538,7 +537,7 @@
     image *prev = 0;
     int i;
     char buff[256];
-    show_image(get_network_image_layer(net, 0), "Crop");
+    //show_image(get_network_image_layer(net, 0), "Crop");
     for(i = 0; i < net.n; ++i){
         sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
@@ -552,6 +551,14 @@
     } 
 }
 
+void top_predictions(network net, int k, int *index)
+{
+    int size = get_network_output_size(net);
+    float *out = get_network_output(net);
+    top_k(out, size, k, index);
+}
+
+
 float *network_predict(network net, float *input)
 {
     forward_network(net, input, 0, 0);
@@ -589,7 +596,7 @@
     int i,j,b;
     int k = get_network_output_size(net);
     matrix pred = make_matrix(test.X.rows, k);
-    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    float *X = calloc(net.batch*test.X.cols, sizeof(float));
     for(i = 0; i < test.X.rows; i += net.batch){
         for(b = 0; b < net.batch; ++b){
             if(i+b == test.X.rows) break;
@@ -654,15 +661,26 @@
 float network_accuracy(network net, data d)
 {
     matrix guess = network_predict_data(net, d);
-    float acc = matrix_accuracy(d.y, guess);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
     free_matrix(guess);
     return acc;
 }
 
+float *network_accuracies(network net, data d)
+{
+    static float acc[2];
+    matrix guess = network_predict_data(net, d);
+    acc[0] = matrix_topk_accuracy(d.y, guess,1);
+    acc[1] = matrix_topk_accuracy(d.y, guess,5);
+    free_matrix(guess);
+    return acc;
+}
+
+
 float network_accuracy_multi(network net, data d, int n)
 {
     matrix guess = network_predict_data_multi(net, d, n);
-    float acc = matrix_accuracy(d.y, guess);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
     free_matrix(guess);
     return acc;
 }

--
Gitblit v1.10.0