From d6fbe86e7a8c1bc389902c90c57ee7e80f5475b9 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 16 Dec 2014 19:40:05 +0000
Subject: [PATCH] updates?
---
src/network.c | 92 ++++++++++++++++++++++++++++++++++++++++++++-
1 files changed, 89 insertions(+), 3 deletions(-)
diff --git a/src/network.c b/src/network.c
index 339e6eb..f451fd9 100644
--- a/src/network.c
+++ b/src/network.c
@@ -125,6 +125,9 @@
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output;
+ } else if(net.types[i] == CROP){
+ crop_layer layer = *(crop_layer *)net.layers[i];
+ return layer.output;
} else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
return layer.output;
@@ -213,12 +216,16 @@
}
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- backward_convolutional_layer(layer, prev_delta);
+ backward_convolutional_layer(layer, prev_input, prev_delta);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
if(i != 0) backward_maxpool_layer(layer, prev_delta);
}
+ else if(net.types[i] == DROPOUT){
+ dropout_layer layer = *(dropout_layer *)net.layers[i];
+ backward_dropout_layer(layer, prev_delta);
+ }
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
@@ -323,6 +330,65 @@
fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
}
+void set_learning_network(network *net, float rate, float momentum, float decay)
+{
+ int i;
+ net->learning_rate=rate;
+ net->momentum = momentum;
+ net->decay = decay;
+ for(i = 0; i < net->n; ++i){
+ if(net->types[i] == CONVOLUTIONAL){
+ convolutional_layer *layer = (convolutional_layer *)net->layers[i];
+ layer->learning_rate=rate;
+ layer->momentum = momentum;
+ layer->decay = decay;
+ }
+ else if(net->types[i] == CONNECTED){
+ connected_layer *layer = (connected_layer *)net->layers[i];
+ layer->learning_rate=rate;
+ layer->momentum = momentum;
+ layer->decay = decay;
+ }
+ }
+}
+
+
+void set_batch_network(network *net, int b)
+{
+ net->batch = b;
+ int i;
+ for(i = 0; i < net->n; ++i){
+ if(net->types[i] == CONVOLUTIONAL){
+ convolutional_layer *layer = (convolutional_layer *)net->layers[i];
+ layer->batch = b;
+ }
+ else if(net->types[i] == MAXPOOL){
+ maxpool_layer *layer = (maxpool_layer *)net->layers[i];
+ layer->batch = b;
+ }
+ else if(net->types[i] == CONNECTED){
+ connected_layer *layer = (connected_layer *)net->layers[i];
+ layer->batch = b;
+ } else if(net->types[i] == DROPOUT){
+ dropout_layer *layer = (dropout_layer *) net->layers[i];
+ layer->batch = b;
+ }
+ else if(net->types[i] == FREEWEIGHT){
+ freeweight_layer *layer = (freeweight_layer *) net->layers[i];
+ layer->batch = b;
+ }
+ else if(net->types[i] == SOFTMAX){
+ softmax_layer *layer = (softmax_layer *)net->layers[i];
+ layer->batch = b;
+ }
+ else if(net->types[i] == COST){
+ cost_layer *layer = (cost_layer *)net->layers[i];
+ layer->batch = b;
+ }
+ }
+}
+
+
int get_network_input_size_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
@@ -339,6 +405,9 @@
} else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *) net.layers[i];
return layer.inputs;
+ } else if(net.types[i] == CROP){
+ crop_layer layer = *(crop_layer *) net.layers[i];
+ return layer.c*layer.h*layer.w;
}
else if(net.types[i] == FREEWEIGHT){
freeweight_layer layer = *(freeweight_layer *) net.layers[i];
@@ -348,6 +417,7 @@
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs;
}
+ printf("Can't find input size\n");
return 0;
}
@@ -363,6 +433,10 @@
image output = get_maxpool_image(layer);
return output.h*output.w*output.c;
}
+ else if(net.types[i] == CROP){
+ crop_layer layer = *(crop_layer *) net.layers[i];
+ return layer.c*layer.crop_height*layer.crop_width;
+ }
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.outputs;
@@ -379,6 +453,7 @@
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs;
}
+ printf("Can't find output size\n");
return 0;
}
@@ -586,15 +661,26 @@
float network_accuracy(network net, data d)
{
matrix guess = network_predict_data(net, d);
- float acc = matrix_accuracy(d.y, guess);
+ float acc = matrix_topk_accuracy(d.y, guess,1);
free_matrix(guess);
return acc;
}
+float *network_accuracies(network net, data d)
+{
+ static float acc[2];
+ matrix guess = network_predict_data(net, d);
+ acc[0] = matrix_topk_accuracy(d.y, guess,1);
+ acc[1] = matrix_topk_accuracy(d.y, guess,5);
+ free_matrix(guess);
+ return acc;
+}
+
+
float network_accuracy_multi(network net, data d, int n)
{
matrix guess = network_predict_data_multi(net, d, n);
- float acc = matrix_accuracy(d.y, guess);
+ float acc = matrix_topk_accuracy(d.y, guess,1);
free_matrix(guess);
return acc;
}
--
Gitblit v1.10.0