From d7286c273211ffeb1f56594f863d1ee9922be6d4 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 07 Nov 2013 00:09:41 +0000
Subject: [PATCH] Loading may or may not work. But probably.

---
 src/network.c             |   50 ++++++++++++
 .gitignore                |    1 
 src/maxpool_layer.h       |    2 
 src/network.h             |    6 +
 Makefile                  |    2 
 src/connected_layer.c     |   34 ++++----
 src/connected_layer.h     |    2 
 src/convolutional_layer.h |    5 +
 src/convolutional_layer.c |   20 ++--
 src/activations.h         |    9 ++
 src/activations.c         |   11 ++
 src/tests.c               |   61 ++++++++++----
 src/image.h               |    1 
 src/maxpool_layer.c       |    8 +-
 14 files changed, 155 insertions(+), 57 deletions(-)

diff --git a/.gitignore b/.gitignore
index d15b2e8..9153fbb 100644
--- a/.gitignore
+++ b/.gitignore
@@ -4,6 +4,7 @@
 images/
 opencv/
 convnet/
+decaf/
 cnn
 
 # OS Generated #
diff --git a/Makefile b/Makefile
index 4cddfd5..bf7cfd3 100644
--- a/Makefile
+++ b/Makefile
@@ -4,7 +4,7 @@
 LDFLAGS=`pkg-config --libs opencv` -lm
 VPATH=./src/
 
-OBJ=network.o image.o tests.o convolutional_layer.o connected_layer.o maxpool_layer.o activations.o
+OBJ=network.o image.o tests.o convolutional_layer.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o
 
 all: cnn
 
diff --git a/src/activations.c b/src/activations.c
index aef21cb..a128029 100644
--- a/src/activations.c
+++ b/src/activations.c
@@ -1,6 +1,17 @@
 #include "activations.h"
 
 #include <math.h>
+#include <stdio.h>
+#include <string.h>
+
+ACTIVATION get_activation(char *s)
+{
+    if (strcmp(s, "sigmoid")==0) return SIGMOID;
+    if (strcmp(s, "relu")==0) return RELU;
+    if (strcmp(s, "identity")==0) return IDENTITY;
+    fprintf(stderr, "Couldn't find activation function %s, going with ReLU\n", s);
+    return RELU;
+}
 
 double identity_activation(double x)
 {
diff --git a/src/activations.h b/src/activations.h
index 294cf28..09584cc 100644
--- a/src/activations.h
+++ b/src/activations.h
@@ -1,10 +1,17 @@
+#ifndef ACTIVATIONS_H
+#define ACTIVATIONS_H
+
 typedef enum{
     SIGMOID, RELU, IDENTITY
-}ACTIVATOR_TYPE;
+}ACTIVATION;
 
+ACTIVATION get_activation(char *s);
 double relu_activation(double x);
 double relu_gradient(double x);
 double sigmoid_activation(double x);
 double sigmoid_gradient(double x);
 double identity_activation(double x);
 double identity_gradient(double x);
+
+#endif
+
diff --git a/src/connected_layer.c b/src/connected_layer.c
index 11143b9..9fafc38 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -4,34 +4,34 @@
 #include <stdlib.h>
 #include <string.h>
 
-connected_layer make_connected_layer(int inputs, int outputs, ACTIVATOR_TYPE activator)
+connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activator)
 {
     int i;
-    connected_layer layer;
-    layer.inputs = inputs;
-    layer.outputs = outputs;
+    connected_layer *layer = calloc(1, sizeof(connected_layer));
+    layer->inputs = inputs;
+    layer->outputs = outputs;
 
-    layer.output = calloc(outputs, sizeof(double*));
+    layer->output = calloc(outputs, sizeof(double*));
 
-    layer.weight_updates = calloc(inputs*outputs, sizeof(double));
-    layer.weights = calloc(inputs*outputs, sizeof(double));
+    layer->weight_updates = calloc(inputs*outputs, sizeof(double));
+    layer->weights = calloc(inputs*outputs, sizeof(double));
     for(i = 0; i < inputs*outputs; ++i)
-        layer.weights[i] = .5 - (double)rand()/RAND_MAX;
+        layer->weights[i] = .5 - (double)rand()/RAND_MAX;
 
-    layer.bias_updates = calloc(outputs, sizeof(double));
-    layer.biases = calloc(outputs, sizeof(double));
+    layer->bias_updates = calloc(outputs, sizeof(double));
+    layer->biases = calloc(outputs, sizeof(double));
     for(i = 0; i < outputs; ++i)
-        layer.biases[i] = (double)rand()/RAND_MAX;
+        layer->biases[i] = (double)rand()/RAND_MAX;
 
     if(activator == SIGMOID){
-        layer.activation = sigmoid_activation;
-        layer.gradient = sigmoid_gradient;
+        layer->activation = sigmoid_activation;
+        layer->gradient = sigmoid_gradient;
     }else if(activator == RELU){
-        layer.activation = relu_activation;
-        layer.gradient = relu_gradient;
+        layer->activation = relu_activation;
+        layer->gradient = relu_gradient;
     }else if(activator == IDENTITY){
-        layer.activation = identity_activation;
-        layer.gradient = identity_gradient;
+        layer->activation = identity_activation;
+        layer->gradient = identity_gradient;
     }
 
     return layer;
diff --git a/src/connected_layer.h b/src/connected_layer.h
index 4f0e42c..eaea306 100644
--- a/src/connected_layer.h
+++ b/src/connected_layer.h
@@ -16,7 +16,7 @@
     double (* gradient)();
 } connected_layer;
 
-connected_layer make_connected_layer(int inputs, int outputs, ACTIVATOR_TYPE activator);
+connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activator);
 
 void run_connected_layer(double *input, connected_layer layer);
 void learn_connected_layer(double *input, connected_layer layer);
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 8053133..7478158 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -10,20 +10,20 @@
     return (x>=0);
 }
 
-convolutional_layer make_convolutional_layer(int h, int w, int c, int n, int size, int stride)
+convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride)
 {
     int i;
-    convolutional_layer layer;
-    layer.n = n;
-    layer.stride = stride;
-    layer.kernels = calloc(n, sizeof(image));
-    layer.kernel_updates = calloc(n, sizeof(image));
+    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
+    layer->n = n;
+    layer->stride = stride;
+    layer->kernels = calloc(n, sizeof(image));
+    layer->kernel_updates = calloc(n, sizeof(image));
     for(i = 0; i < n; ++i){
-        layer.kernels[i] = make_random_kernel(size, c);
-        layer.kernel_updates[i] = make_random_kernel(size, c);
+        layer->kernels[i] = make_random_kernel(size, c);
+        layer->kernel_updates[i] = make_random_kernel(size, c);
     }
-    layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, n);
-    layer.upsampled = make_image(h,w,n);
+    layer->output = make_image((h-1)/stride+1, (w-1)/stride+1, n);
+    layer->upsampled = make_image(h,w,n);
     return layer;
 }
 
diff --git a/src/convolutional_layer.h b/src/convolutional_layer.h
index 2428715..75be04b 100644
--- a/src/convolutional_layer.h
+++ b/src/convolutional_layer.h
@@ -12,9 +12,12 @@
     image output;
 } convolutional_layer;
 
-convolutional_layer make_convolutional_layer(int w, int h, int c, int n, int size, int stride);
+convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride);
 void run_convolutional_layer(const image input, const convolutional_layer layer);
 void learn_convolutional_layer(image input, convolutional_layer layer);
+void update_convolutional_layer(convolutional_layer layer, double step);
+void backpropagate_convolutional_layer(image input, convolutional_layer layer);
+void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer);
 
 #endif
 
diff --git a/src/image.h b/src/image.h
index 85306f0..e2fe8c0 100644
--- a/src/image.h
+++ b/src/image.h
@@ -14,6 +14,7 @@
 void threshold_image(image p, double t);
 void zero_image(image m);
 void rotate_image(image m);
+void subtract_image(image a, image b);
 
 void show_image(image p, char *name);
 void show_image_layers(image p, char *name);
diff --git a/src/maxpool_layer.c b/src/maxpool_layer.c
index 38ac582..6f7d2a2 100644
--- a/src/maxpool_layer.c
+++ b/src/maxpool_layer.c
@@ -1,10 +1,10 @@
 #include "maxpool_layer.h"
 
-maxpool_layer make_maxpool_layer(int h, int w, int c, int stride)
+maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride)
 {
-    maxpool_layer layer;
-    layer.stride = stride;
-    layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, c);
+    maxpool_layer *layer = calloc(1, sizeof(maxpool_layer));
+    layer->stride = stride;
+    layer->output = make_image((h-1)/stride+1, (w-1)/stride+1, c);
     return layer;
 }
 
diff --git a/src/maxpool_layer.h b/src/maxpool_layer.h
index 077bcfa..4d7726d 100644
--- a/src/maxpool_layer.h
+++ b/src/maxpool_layer.h
@@ -8,7 +8,7 @@
     image output;
 } maxpool_layer;
 
-maxpool_layer make_maxpool_layer(int h, int w, int c, int stride);
+maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride);
 void run_maxpool_layer(const image input, const maxpool_layer layer);
 
 #endif
diff --git a/src/network.c b/src/network.c
index 0a74b63..53184d9 100644
--- a/src/network.c
+++ b/src/network.c
@@ -5,6 +5,15 @@
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
 
+network make_network(int n)
+{
+    network net;
+    net.n = n;
+    net.layers = calloc(net.n, sizeof(void *));
+    net.types = calloc(net.n, sizeof(LAYER_TYPE));
+    return net;
+}
+
 void run_network(image input, network net)
 {
     int i;
@@ -84,9 +93,9 @@
     }
 }
 
-double *get_network_output(network net)
+
+double *get_network_output_layer(network net, int i)
 {
-    int i = net.n-1;
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
         return layer.output.data;
@@ -101,6 +110,43 @@
     }
     return 0;
 }
+
+int get_network_output_size_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.output.h*layer.output.w*layer.output.c;
+    }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.output.h*layer.output.w*layer.output.c;
+    }
+    else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.outputs;
+    }
+    return 0;
+}
+
+double *get_network_output(network net)
+{
+    int i = net.n-1;
+    return get_network_output_layer(net, i);
+}
+
+image get_network_image_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.output;
+    }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.output;
+    }
+    return make_image(0,0,0);
+}
+
 image get_network_image(network net)
 {
     int i;
diff --git a/src/network.h b/src/network.h
index 2fb9225..ad2b1dc 100644
--- a/src/network.h
+++ b/src/network.h
@@ -16,11 +16,15 @@
     LAYER_TYPE *types;
 } network;
 
+network make_network(int n);
 void run_network(image input, network net);
-double *get_network_output(network net);
 void learn_network(image input, network net);
 void update_network(network net, double step);
+double *get_network_output(network net);
+double *get_network_output_layer(network net, int i);
+int get_network_output_size_layer(network net, int i);
 image get_network_image(network net);
+image get_network_image_layer(network net, int i);
 
 #endif
 
diff --git a/src/tests.c b/src/tests.c
index f2b50dc..0e639be 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -3,6 +3,7 @@
 #include "maxpool_layer.h"
 #include "network.h"
 #include "image.h"
+#include "parser.h"
 
 #include <time.h>
 #include <stdlib.h>
@@ -39,7 +40,7 @@
     int n = 3;
     int stride = 1;
     int size = 3;
-    convolutional_layer layer = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
+    convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
     char buff[256];
     for(i = 0; i < n; ++i) {
         sprintf(buff, "Kernel %d", i);
@@ -47,7 +48,7 @@
     }
     run_convolutional_layer(dog, layer);
     
-    maxpool_layer mlayer = make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2);
+    maxpool_layer mlayer = *make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2);
     run_maxpool_layer(layer.output,mlayer);
 
     show_image_layers(mlayer.output, "Test Maxpool Layer");
@@ -112,25 +113,25 @@
     int n = 48;
     int stride = 4;
     int size = 11;
-    convolutional_layer cl = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
-    maxpool_layer ml = make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2);
+    convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
+    maxpool_layer ml = *make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2);
 
     n = 128;
     size = 5;
     stride = 1;
-    convolutional_layer cl2 = make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride);
-    maxpool_layer ml2 = make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2);
+    convolutional_layer cl2 = *make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride);
+    maxpool_layer ml2 = *make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2);
 
     n = 192;
     size = 3;
-    convolutional_layer cl3 = make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride);
-    convolutional_layer cl4 = make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride);
+    convolutional_layer cl3 = *make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride);
+    convolutional_layer cl4 = *make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride);
     n = 128;
-    convolutional_layer cl5 = make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride);
-    maxpool_layer ml3 = make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4);
-    connected_layer nl = make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU);
-    connected_layer nl2 = make_connected_layer(4096, 4096, RELU);
-    connected_layer nl3 = make_connected_layer(4096, 1000, RELU);
+    convolutional_layer cl5 = *make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride);
+    maxpool_layer ml3 = *make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4);
+    connected_layer nl = *make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU);
+    connected_layer nl2 = *make_connected_layer(4096, 4096, RELU);
+    connected_layer nl3 = *make_connected_layer(4096, 1000, RELU);
 
     net.layers[0] = &cl;
     net.layers[1] = &ml;
@@ -164,7 +165,7 @@
     image dog = load_image("dog.jpg");
     show_image(dog, "Test Backpropagate Input");
     image dog_copy = copy_image(dog);
-    convolutional_layer cl = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
+    convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
     run_convolutional_layer(dog, cl);
     show_image(cl.output, "Test Backpropagate Output");
     int i;
@@ -196,9 +197,9 @@
     net.types[1] = CONNECTED;
     net.types[2] = CONNECTED;
 
-    connected_layer nl = make_connected_layer(1, 20, RELU);
-    connected_layer nl2 = make_connected_layer(20, 20, RELU);
-    connected_layer nl3 = make_connected_layer(20, 1, RELU);
+    connected_layer nl = *make_connected_layer(1, 20, RELU);
+    connected_layer nl2 = *make_connected_layer(20, 20, RELU);
+    connected_layer nl3 = *make_connected_layer(20, 1, RELU);
 
     net.layers[0] = &nl;
     net.layers[1] = &nl2;
@@ -225,10 +226,34 @@
 
 }
 
+void test_parser()
+{
+    network net = parse_network_cfg("test.cfg");
+    image t = make_image(1,1,1);
+    int count = 0;
+        
+    double avgerr = 0;
+    while(1){
+        double v = ((double)rand()/RAND_MAX);
+        double truth = v*v;
+        set_pixel(t,0,0,0,v);
+        run_network(t, net);
+        double *out = get_network_output(net);
+        double err = pow((out[0]-truth),2.);
+        avgerr = .99 * avgerr + .01 * err;
+        //if(++count % 100000 == 0) printf("%f\n", avgerr);
+        if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
+        out[0] = truth - out[0];
+        learn_network(t, net);
+        update_network(net, .001);
+    }
+}
+
 int main()
 {
+    test_parser();
     //test_backpropagate();
-    test_ann();
+    //test_ann();
     //test_convolve();
     //test_upsample();
     //test_rotate();

--
Gitblit v1.10.0