From d790f21c9a56cc2eadb4f3ee5d3aed7f7b677178 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 06 Jun 2016 20:37:30 +0000
Subject: [PATCH] damnit alex
---
src/network.c | 31 +++++++++++++++++++++++++++++++
1 files changed, 31 insertions(+), 0 deletions(-)
diff --git a/src/network.c b/src/network.c
index e6fb51e..88b7085 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,6 +8,7 @@
#include "crop_layer.h"
#include "connected_layer.h"
+#include "gru_layer.h"
#include "rnn_layer.h"
#include "crnn_layer.h"
#include "local_layer.h"
@@ -16,6 +17,7 @@
#include "deconvolutional_layer.h"
#include "detection_layer.h"
#include "normalization_layer.h"
+#include "batchnorm_layer.h"
#include "maxpool_layer.h"
#include "avgpool_layer.h"
#include "cost_layer.h"
@@ -63,6 +65,8 @@
return net.learning_rate * pow(net.gamma, batch_num);
case POLY:
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+ case RANDOM:
+ return net.learning_rate * pow(rand_uniform(0,1), net.power);
case SIG:
return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
default:
@@ -86,6 +90,8 @@
return "connected";
case RNN:
return "rnn";
+ case GRU:
+ return "gru";
case CRNN:
return "crnn";
case MAXPOOL:
@@ -108,6 +114,8 @@
return "shortcut";
case NORMALIZATION:
return "normalization";
+ case BATCHNORM:
+ return "batchnorm";
default:
break;
}
@@ -129,6 +137,7 @@
void forward_network(network net, network_state state)
{
+ state.workspace = net.workspace;
int i;
for(i = 0; i < net.n; ++i){
state.index = i;
@@ -146,12 +155,16 @@
forward_local_layer(l, state);
} else if(l.type == NORMALIZATION){
forward_normalization_layer(l, state);
+ } else if(l.type == BATCHNORM){
+ forward_batchnorm_layer(l, state);
} else if(l.type == DETECTION){
forward_detection_layer(l, state);
} else if(l.type == CONNECTED){
forward_connected_layer(l, state);
} else if(l.type == RNN){
forward_rnn_layer(l, state);
+ } else if(l.type == GRU){
+ forward_gru_layer(l, state);
} else if(l.type == CRNN){
forward_crnn_layer(l, state);
} else if(l.type == CROP){
@@ -190,6 +203,8 @@
update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == RNN){
update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == GRU){
+ update_gru_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == CRNN){
update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == LOCAL){
@@ -200,6 +215,9 @@
float *get_network_output(network net)
{
+ #ifdef GPU
+ return get_network_output_gpu(net);
+ #endif
int i;
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
return net.layers[i].output;
@@ -254,6 +272,8 @@
backward_activation_layer(l, state);
} else if(l.type == NORMALIZATION){
backward_normalization_layer(l, state);
+ } else if(l.type == BATCHNORM){
+ backward_batchnorm_layer(l, state);
} else if(l.type == MAXPOOL){
if(i != 0) backward_maxpool_layer(l, state);
} else if(l.type == AVGPOOL){
@@ -268,6 +288,8 @@
backward_connected_layer(l, state);
} else if(l.type == RNN){
backward_rnn_layer(l, state);
+ } else if(l.type == GRU){
+ backward_gru_layer(l, state);
} else if(l.type == CRNN){
backward_crnn_layer(l, state);
} else if(l.type == LOCAL){
@@ -379,6 +401,7 @@
net->w = w;
net->h = h;
int inputs = 0;
+ size_t workspace_size = 0;
//fprintf(stderr, "Resizing to %d x %d...", w, h);
//fflush(stderr);
for (i = 0; i < net->n; ++i){
@@ -398,12 +421,20 @@
}else{
error("Cannot resize this type of layer");
}
+ if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
inputs = l.outputs;
net->layers[i] = l;
w = l.out_w;
h = l.out_h;
if(l.type == AVGPOOL) break;
}
+#ifdef GPU
+ cuda_free(net->workspace);
+ net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+#else
+ free(net->workspace);
+ net->workspace = calloc(1, (workspace_size-1)/sizeof(float)+1);
+#endif
//fprintf(stderr, " Done!\n");
return 0;
}
--
Gitblit v1.10.0