From d7d7da2653ff4f79a275529b0ac3fec438880083 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 27 Mar 2015 02:13:59 +0000
Subject: [PATCH] Fixed im2col mistake >< face#palm

---
 src/dropout_layer_kernels.cu |    5 +++++
 src/col2im_kernels.cu        |    6 +++---
 src/detection.c              |    9 +++++----
 Makefile                     |    2 +-
 src/network_kernels.cu       |    1 +
 src/convolutional_kernels.cu |    6 +++---
 src/detection_layer.c        |   18 ++++++++++++++++--
 7 files changed, 34 insertions(+), 13 deletions(-)

diff --git a/Makefile b/Makefile
index bdbc73d..f474fce 100644
--- a/Makefile
+++ b/Makefile
@@ -1,6 +1,6 @@
 GPU=1
 DEBUG=0
-ARCH= -arch=sm_35
+ARCH= -arch=sm_50
 
 VPATH=./src/
 EXEC=darknet
diff --git a/src/col2im_kernels.cu b/src/col2im_kernels.cu
index 76a86e6..67c0b03 100644
--- a/src/col2im_kernels.cu
+++ b/src/col2im_kernels.cu
@@ -37,9 +37,9 @@
     }
 }
 
-void col2im_ongpu(float *im,
+void col2im_ongpu(float *data_col,
         int channels, int height, int width,
-        int ksize, int stride, int pad, float *data_col){
+        int ksize, int stride, int pad, float *data_im){
     // We are going to launch channels * height_col * width_col kernels, each
     // kernel responsible for copying a single-channel grid.
     pad = pad ? ksize/2 : 0;
@@ -50,7 +50,7 @@
         BLOCK>>>(
                 num_kernels, data_col, height, width, ksize, pad,
                 stride, height_col,
-                width_col, im);
+                width_col, data_im);
 }
 
 /*
diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 5b49091..c28731f 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -26,7 +26,7 @@
     check_error(cudaPeekAtLastError());
 }
 
-__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size, float scale)
+__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size)
 {
     __shared__ float part[BLOCK];
     int i,b;
@@ -42,13 +42,13 @@
     part[p] = sum;
     __syncthreads();
     if(p == 0){
-        for(i = 0; i < BLOCK; ++i) bias_updates[filter] += scale * part[i];
+        for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i];
     }
 }
 
 void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
 {
-    backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, 1);
+    backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size);
     check_error(cudaPeekAtLastError());
 }
 
diff --git a/src/detection.c b/src/detection.c
index 1800ca6..69202aa 100644
--- a/src/detection.c
+++ b/src/detection.c
@@ -45,7 +45,7 @@
 {
     char *base = basecfg(cfgfile);
     printf("%s\n", base);
-    float avg_loss = 1;
+    float avg_loss = -1;
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
@@ -84,6 +84,7 @@
         time=clock();
         float loss = train_network(net, train);
         net.seen += imgs;
+        if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
         if(i%100==0){
@@ -109,8 +110,8 @@
     char **paths = (char **)list_to_array(plist);
     int im_size = 448;
     int classes = 20;
-    int background = 1;
-    int nuisance = 0;
+    int background = 0;
+    int nuisance = 1;
     int num_output = 7*7*(4+classes+background+nuisance);
 
     int m = plist->size;
@@ -137,7 +138,7 @@
         for(j = 0; j < pred.rows; ++j){
             for(k = 0; k < pred.cols; k += classes+4+background+nuisance){
                 float scale = 1.;
-                if(nuisance) scale = pred.vals[j][k];
+                if(nuisance) scale = 1.-pred.vals[j][k];
                 for(class = 0; class < classes; ++class){
                     int index = (k)/(classes+4+background+nuisance); 
                     int r = index/7;
diff --git a/src/detection_layer.c b/src/detection_layer.c
index 27a4daf..73b2862 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -93,6 +93,19 @@
         }
     }
     /*
+    int count = 0;
+    for(i = 0; i < layer.batch*locations; ++i){
+        for(j = 0; j < layer.classes+layer.background; ++j){
+            printf("%f, ", layer.output[count++]);
+        }
+        printf("\n");
+        for(j = 0; j < layer.coords; ++j){
+            printf("%f, ", layer.output[count++]);
+        }
+        printf("\n");
+    }
+    */
+    /*
     if(layer.background || 1){
         for(i = 0; i < layer.batch*locations; ++i){
             int index = i*(layer.classes+layer.coords+layer.background);
@@ -123,8 +136,9 @@
             state.delta[in_i++] = scale*layer.delta[out_i++];
         }
 
-        if (layer.nuisance) ;
-        else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
+        if (layer.nuisance) {
+
+        }else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
         for(j = 0; j < layer.coords; ++j){
             state.delta[in_i++] = layer.delta[out_i++];
         }
diff --git a/src/dropout_layer_kernels.cu b/src/dropout_layer_kernels.cu
index 2638ac5..231497d 100644
--- a/src/dropout_layer_kernels.cu
+++ b/src/dropout_layer_kernels.cu
@@ -16,6 +16,11 @@
     if (!state.train) return;
     int size = layer.inputs*layer.batch;
     cuda_random(layer.rand_gpu, size);
+    int i;
+    for(i = 0; i < size; ++i){
+        layer.rand[i] = rand_uniform();
+    }
+    cuda_push_array(layer.rand_gpu, layer.rand, size);
 
     yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(state.input, size, layer.rand_gpu, layer.probability, layer.scale);
     check_error(cudaPeekAtLastError());
diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 019f40d..0b2bb97 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -71,6 +71,7 @@
             state.input = get_network_output_gpu_layer(net, i-1);
             state.delta = get_network_delta_gpu_layer(net, i-1);
         }
+
         if(net.types[i] == CONVOLUTIONAL){
             backward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
         }

--
Gitblit v1.10.0