From d7d7da2653ff4f79a275529b0ac3fec438880083 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 27 Mar 2015 02:13:59 +0000
Subject: [PATCH] Fixed im2col mistake >< face#palm

---
 src/detection_layer.c |  139 ++++++++++++++++++++++++++++++++++++----------
 1 files changed, 108 insertions(+), 31 deletions(-)

diff --git a/src/detection_layer.c b/src/detection_layer.c
index 68d151a..73b2862 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -8,23 +8,25 @@
 
 int get_detection_layer_locations(detection_layer layer)
 {
-    return layer.inputs / (layer.classes+layer.coords+layer.rescore);
+    return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background);
 }
 
 int get_detection_layer_output_size(detection_layer layer)
 {
-    return get_detection_layer_locations(layer)*(layer.classes+layer.coords);
+    return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
 }
 
-detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore)
+detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
 {
     detection_layer *layer = calloc(1, sizeof(detection_layer));
-
+    
     layer->batch = batch;
     layer->inputs = inputs;
     layer->classes = classes;
     layer->coords = coords;
     layer->rescore = rescore;
+    layer->nuisance = nuisance;
+    layer->background = background;
     int outputs = get_detection_layer_output_size(*layer);
     layer->output = calloc(batch*outputs, sizeof(float));
     layer->delta = calloc(batch*outputs, sizeof(float));
@@ -39,28 +41,85 @@
     return layer;
 }
 
-void forward_detection_layer(const detection_layer layer, float *in, float *truth)
+void dark_zone(detection_layer layer, int class, int start, network_state state)
+{
+    int index = start+layer.background+class;
+    int size = layer.classes+layer.coords+layer.background;
+    int location = (index%(7*7*size)) / size ;
+    int r = location / 7;
+    int c = location % 7;
+    int dr, dc;
+    for(dr = -1; dr <= 1; ++dr){
+        for(dc = -1; dc <= 1; ++dc){
+            if(!(dr || dc)) continue;
+            if((r + dr) > 6 || (r + dr) < 0) continue;
+            if((c + dc) > 6 || (c + dc) < 0) continue;
+            int di = (dr*7 + dc) * size;
+            if(state.truth[index+di]) continue;
+            layer.output[index + di] = 0;
+            //if(!state.truth[start+di]) continue;
+            //layer.output[start + di] = 1;
+        }
+    }
+}
+
+void forward_detection_layer(const detection_layer layer, network_state state)
 {
     int in_i = 0;
     int out_i = 0;
     int locations = get_detection_layer_locations(layer);
     int i,j;
     for(i = 0; i < layer.batch*locations; ++i){
-        int mask = (!truth || !truth[out_i + layer.classes - 1]);
+        int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
         float scale = 1;
-        if(layer.rescore) scale = in[in_i++];
-        for(j = 0; j < layer.classes; ++j){
-            layer.output[out_i++] = scale*in[in_i++];
+        if(layer.rescore) scale = state.input[in_i++];
+        else if(layer.nuisance){
+            layer.output[out_i++] = 1-state.input[in_i++];
+            scale = mask;
         }
-        softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes);
-        activate_array(in+in_i, layer.coords, LOGISTIC);
+        else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
+
+        for(j = 0; j < layer.classes; ++j){
+            layer.output[out_i++] = scale*state.input[in_i++];
+        }
+        if(layer.nuisance){
+            
+        }else if(layer.background){
+            softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
+            activate_array(state.input+in_i, layer.coords, LOGISTIC);
+        }
         for(j = 0; j < layer.coords; ++j){
-            layer.output[out_i++] = mask*in[in_i++];
+            layer.output[out_i++] = mask*state.input[in_i++];
         }
     }
+    /*
+    int count = 0;
+    for(i = 0; i < layer.batch*locations; ++i){
+        for(j = 0; j < layer.classes+layer.background; ++j){
+            printf("%f, ", layer.output[count++]);
+        }
+        printf("\n");
+        for(j = 0; j < layer.coords; ++j){
+            printf("%f, ", layer.output[count++]);
+        }
+        printf("\n");
+    }
+    */
+    /*
+    if(layer.background || 1){
+        for(i = 0; i < layer.batch*locations; ++i){
+            int index = i*(layer.classes+layer.coords+layer.background);
+            for(j= 0; j < layer.classes; ++j){
+                if(state.truth[index+j+layer.background]){
+                    //dark_zone(layer, j, index, state);
+                }
+            }
+        }
+    }
+    */
 }
 
-void backward_detection_layer(const detection_layer layer, float *in, float *delta)
+void backward_detection_layer(const detection_layer layer, network_state state)
 {
     int locations = get_detection_layer_locations(layer);
     int i,j;
@@ -69,49 +128,67 @@
     for(i = 0; i < layer.batch*locations; ++i){
         float scale = 1;
         float latent_delta = 0;
-        if(layer.rescore) scale = in[in_i++];
+        if(layer.rescore) scale = state.input[in_i++];
+        else if (layer.nuisance)   state.delta[in_i++] = -layer.delta[out_i++];
+        else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
         for(j = 0; j < layer.classes; ++j){
-            latent_delta += in[in_i]*layer.delta[out_i];
-            delta[in_i++] = scale*layer.delta[out_i++];
+            latent_delta += state.input[in_i]*layer.delta[out_i];
+            state.delta[in_i++] = scale*layer.delta[out_i++];
         }
-        
-        gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
+
+        if (layer.nuisance) {
+
+        }else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
         for(j = 0; j < layer.coords; ++j){
-            delta[in_i++] = layer.delta[out_i++];
+            state.delta[in_i++] = layer.delta[out_i++];
         }
-        if(layer.rescore) delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta;
+        if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta;
     }
 }
 
 #ifdef GPU
 
-void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth)
+void forward_detection_layer_gpu(const detection_layer layer, network_state state)
 {
     int outputs = get_detection_layer_output_size(layer);
     float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
     float *truth_cpu = 0;
-    if(truth){
+    if(state.truth){
         truth_cpu = calloc(layer.batch*outputs, sizeof(float));
-        cuda_pull_array(truth, truth_cpu, layer.batch*outputs);
+        cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
     }
-    cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
-    forward_detection_layer(layer, in_cpu, truth_cpu);
+    cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
+    network_state cpu_state;
+    cpu_state.train = state.train;
+    cpu_state.truth = truth_cpu;
+    cpu_state.input = in_cpu;
+    forward_detection_layer(layer, cpu_state);
     cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
-    free(in_cpu);
-    if(truth_cpu) free(truth_cpu);
+    free(cpu_state.input);
+    if(cpu_state.truth) free(cpu_state.truth);
 }
 
-void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta)
+void backward_detection_layer_gpu(detection_layer layer, network_state state)
 {
     int outputs = get_detection_layer_output_size(layer);
 
     float *in_cpu =    calloc(layer.batch*layer.inputs, sizeof(float));
     float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
+    float *truth_cpu = 0;
+    if(state.truth){
+        truth_cpu = calloc(layer.batch*outputs, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
+    }
+    network_state cpu_state;
+    cpu_state.train = state.train;
+    cpu_state.input = in_cpu;
+    cpu_state.truth = truth_cpu;
+    cpu_state.delta = delta_cpu;
 
-    cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
+    cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
     cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
-    backward_detection_layer(layer, in_cpu, delta_cpu);
-    cuda_push_array(delta, delta_cpu, layer.batch*layer.inputs);
+    backward_detection_layer(layer, cpu_state);
+    cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
 
     free(in_cpu);
     free(delta_cpu);

--
Gitblit v1.10.0