From d9ae3dd681ed1c98e807ff937dbbb9cfc4d19fe0 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Tue, 27 Mar 2018 23:59:03 +0000
Subject: [PATCH] Added Yolo v3
---
src/detection_layer.c | 66 ++++++++++++++++++++++++++++++++-
1 files changed, 64 insertions(+), 2 deletions(-)
diff --git a/src/detection_layer.c b/src/detection_layer.c
index 1fe6767..0a1c107 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -30,7 +30,12 @@
l.truths = l.side*l.side*(1+l.coords+l.classes);
l.output = calloc(batch*l.outputs, sizeof(float));
l.delta = calloc(batch*l.outputs, sizeof(float));
+
+ l.forward = forward_detection_layer;
+ l.backward = backward_detection_layer;
#ifdef GPU
+ l.forward_gpu = forward_detection_layer_gpu;
+ l.backward_gpu = backward_detection_layer_gpu;
l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
#endif
@@ -53,8 +58,8 @@
int index = b*l.inputs;
for (i = 0; i < locations; ++i) {
int offset = i*l.classes;
- softmax_array(l.output + index + offset, l.classes, 1,
- l.output + index + offset);
+ softmax(l.output + index + offset, l.classes, 1,
+ l.output + index + offset, 1);
}
}
}
@@ -216,6 +221,35 @@
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
}
+void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
+{
+ int i,j,n;
+ float *predictions = l.output;
+ //int per_cell = 5*num+classes;
+ for (i = 0; i < l.side*l.side; ++i){
+ int row = i / l.side;
+ int col = i % l.side;
+ for(n = 0; n < l.n; ++n){
+ int index = i*l.n + n;
+ int p_index = l.side*l.side*l.classes + i*l.n + n;
+ float scale = predictions[p_index];
+ int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4;
+ boxes[index].x = (predictions[box_index + 0] + col) / l.side * w;
+ boxes[index].y = (predictions[box_index + 1] + row) / l.side * h;
+ boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w;
+ boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h;
+ for(j = 0; j < l.classes; ++j){
+ int class_index = i*l.classes;
+ float prob = scale*predictions[class_index+j];
+ probs[index][j] = (prob > thresh) ? prob : 0;
+ }
+ if(only_objectness){
+ probs[index][0] = scale;
+ }
+ }
+ }
+}
+
#ifdef GPU
void forward_detection_layer_gpu(const detection_layer l, network_state state)
@@ -251,3 +285,31 @@
}
#endif
+void get_detection_detections(layer l, int w, int h, float thresh, detection *dets)
+{
+ int i, j, n;
+ float *predictions = l.output;
+ //int per_cell = 5*num+classes;
+ for (i = 0; i < l.side*l.side; ++i) {
+ int row = i / l.side;
+ int col = i % l.side;
+ for (n = 0; n < l.n; ++n) {
+ int index = i*l.n + n;
+ int p_index = l.side*l.side*l.classes + i*l.n + n;
+ float scale = predictions[p_index];
+ int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n) * 4;
+ box b;
+ b.x = (predictions[box_index + 0] + col) / l.side * w;
+ b.y = (predictions[box_index + 1] + row) / l.side * h;
+ b.w = pow(predictions[box_index + 2], (l.sqrt ? 2 : 1)) * w;
+ b.h = pow(predictions[box_index + 3], (l.sqrt ? 2 : 1)) * h;
+ dets[index].bbox = b;
+ dets[index].objectness = scale;
+ for (j = 0; j < l.classes; ++j) {
+ int class_index = i*l.classes;
+ float prob = scale*predictions[class_index + j];
+ dets[index].prob[j] = (prob > thresh) ? prob : 0;
+ }
+ }
+ }
+}
\ No newline at end of file
--
Gitblit v1.10.0