From d9f1b0b16edeb59281355a855e18a8be343fc33c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 08 Aug 2014 19:04:15 +0000
Subject: [PATCH] probably how maxpool layers should be

---
 src/connected_layer.c |  111 ++++++++++++++-----------------------------------------
 1 files changed, 28 insertions(+), 83 deletions(-)

diff --git a/src/connected_layer.c b/src/connected_layer.c
index 16a39be..368fb63 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -7,11 +7,16 @@
 #include <stdlib.h>
 #include <string.h>
 
-connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
+connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay)
 {
     fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
     int i;
     connected_layer *layer = calloc(1, sizeof(connected_layer));
+
+    layer->learning_rate = learning_rate;
+    layer->momentum = momentum;
+    layer->decay = decay;
+
     layer->inputs = inputs;
     layer->outputs = outputs;
     layer->batch=batch;
@@ -24,8 +29,9 @@
     layer->weight_momentum = calloc(inputs*outputs, sizeof(float));
     layer->weights = calloc(inputs*outputs, sizeof(float));
     float scale = 1./inputs;
+    //scale = .01;
     for(i = 0; i < inputs*outputs; ++i)
-        layer->weights[i] = scale*(rand_uniform());
+        layer->weights[i] = scale*(rand_uniform()-.5);
 
     layer->bias_updates = calloc(outputs, sizeof(float));
     layer->bias_adapt = calloc(outputs, sizeof(float));
@@ -39,36 +45,15 @@
     return layer;
 }
 
-/*
-void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
+void update_connected_layer(connected_layer layer)
 {
     int i;
     for(i = 0; i < layer.outputs; ++i){
-        float delta = layer.bias_updates[i];
-        layer.bias_adapt[i] += delta*delta;
-        layer.bias_momentum[i] = step/sqrt(layer.bias_adapt[i])*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
+        layer.bias_momentum[i] = layer.learning_rate*(layer.bias_updates[i]) + layer.momentum*layer.bias_momentum[i];
         layer.biases[i] += layer.bias_momentum[i];
     }
     for(i = 0; i < layer.outputs*layer.inputs; ++i){
-        float delta = layer.weight_updates[i];
-        layer.weight_adapt[i] += delta*delta;
-        layer.weight_momentum[i] = step/sqrt(layer.weight_adapt[i])*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
-        layer.weights[i] += layer.weight_momentum[i];
-    }
-    memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
-    memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
-}
-*/
-
-void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
-{
-    int i;
-    for(i = 0; i < layer.outputs; ++i){
-        layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
-        layer.biases[i] += layer.bias_momentum[i];
-    }
-    for(i = 0; i < layer.outputs*layer.inputs; ++i){
-        layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
+        layer.weight_momentum[i] = layer.learning_rate*(layer.weight_updates[i] - layer.decay*layer.weights[i]) + layer.momentum*layer.weight_momentum[i];
         layer.weights[i] += layer.weight_momentum[i];
     }
     memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
@@ -78,7 +63,9 @@
 void forward_connected_layer(connected_layer layer, float *input)
 {
     int i;
-    memcpy(layer.output, layer.biases, layer.outputs*sizeof(float));
+    for(i = 0; i < layer.batch; ++i){
+        memcpy(layer.output+i*layer.outputs, layer.biases, layer.outputs*sizeof(float));
+    }
     int m = layer.batch;
     int k = layer.inputs;
     int n = layer.outputs;
@@ -86,18 +73,15 @@
     float *b = layer.weights;
     float *c = layer.output;
     gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-    for(i = 0; i < layer.outputs*layer.batch; ++i){
-        layer.output[i] = activate(layer.output[i], layer.activation);
-    }
-    //for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
+    activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
 }
 
-void learn_connected_layer(connected_layer layer, float *input)
+void backward_connected_layer(connected_layer layer, float *input, float *delta)
 {
     int i;
     for(i = 0; i < layer.outputs*layer.batch; ++i){
         layer.delta[i] *= gradient(layer.output[i], layer.activation);
-        layer.bias_updates[i%layer.batch] += layer.delta[i]/layer.batch;
+        layer.bias_updates[i%layer.outputs] += layer.delta[i];
     }
     int m = layer.inputs;
     int k = layer.batch;
@@ -105,55 +89,16 @@
     float *a = input;
     float *b = layer.delta;
     float *c = layer.weight_updates;
-    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+    gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
+
+    m = layer.batch;
+    k = layer.outputs;
+    n = layer.inputs;
+
+    a = layer.delta;
+    b = layer.weights;
+    c = delta;
+
+    if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
 }
 
-void backward_connected_layer(connected_layer layer, float *input, float *delta)
-{
-    memset(delta, 0, layer.inputs*sizeof(float));
-
-    int m = layer.inputs;
-    int k = layer.outputs;
-    int n = layer.batch;
-
-    float *a = layer.weights;
-    float *b = layer.delta;
-    float *c = delta;
-
-    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-}
-/*
-   void forward_connected_layer(connected_layer layer, float *input)
-   {
-   int i, j;
-   for(i = 0; i < layer.outputs; ++i){
-   layer.output[i] = layer.biases[i];
-   for(j = 0; j < layer.inputs; ++j){
-   layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
-   }
-   layer.output[i] = activate(layer.output[i], layer.activation);
-   }
-   }
-   void learn_connected_layer(connected_layer layer, float *input)
-   {
-   int i, j;
-   for(i = 0; i < layer.outputs; ++i){
-   layer.delta[i] *= gradient(layer.output[i], layer.activation);
-   layer.bias_updates[i] += layer.delta[i];
-   for(j = 0; j < layer.inputs; ++j){
-   layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j];
-   }
-   }
-   }
-   void backward_connected_layer(connected_layer layer, float *input, float *delta)
-   {
-   int i, j;
-
-   for(j = 0; j < layer.inputs; ++j){
-   delta[j] = 0;
-   for(i = 0; i < layer.outputs; ++i){
-   delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j];
-   }
-   }
-   }
- */

--
Gitblit v1.10.0