From d9f1b0b16edeb59281355a855e18a8be343fc33c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 08 Aug 2014 19:04:15 +0000
Subject: [PATCH] probably how maxpool layers should be

---
 src/data.c |  281 +++++++++++++++++++++++++++++++++++++++++++-------------
 1 files changed, 216 insertions(+), 65 deletions(-)

diff --git a/src/data.c b/src/data.c
index 7ef0d80..846b950 100644
--- a/src/data.c
+++ b/src/data.c
@@ -1,27 +1,16 @@
 #include "data.h"
-#include "list.h"
 #include "utils.h"
+#include "image.h"
 
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 
-batch make_batch(int n, int k)
-{
-    batch b;
-    b.n = n;
-    if(k < 3) k = 1;
-    b.images = calloc(n, sizeof(image));
-    b.truth = calloc(n, sizeof(double *));
-    int i;
-    for(i =0 ; i < n; ++i) b.truth[i] = calloc(k, sizeof(double));
-    return b;
-}
-
 list *get_paths(char *filename)
 {
     char *path;
     FILE *file = fopen(filename, "r");
+    if(!file) file_error(filename);
     list *lines = make_list();
     while((path=fgetl(file))){
         list_insert(lines, path);
@@ -30,79 +19,241 @@
     return lines;
 }
 
-int get_truth(char *path)
-{
-    if(strstr(path, "dog")) return 1;
-    return 0;
-}
-
-batch load_list(list *paths)
-{
-    char *path;
-    batch data = make_batch(paths->size, 2);
-    node *n = paths->front;
-    int i;
-    for(i = 0; i < data.n; ++i){
-        path = (char *)n->val;
-        data.images[i] = load_image(path);
-        data.truth[i][0] = get_truth(path);
-        n = n->next;
-    }
-    return data;
-}
-
-batch get_all_data(char *filename)
-{
-    list *paths = get_paths(filename);
-    batch b = load_list(paths);
-    free_list_contents(paths);
-    free_list(paths);
-    return b;
-}
-
-void free_batch(batch b)
+void fill_truth(char *path, char **labels, int k, float *truth)
 {
     int i;
-    for(i = 0; i < b.n; ++i){
-        free_image(b.images[i]);
-        free(b.truth[i]);
+    memset(truth, 0, k*sizeof(float));
+    for(i = 0; i < k; ++i){
+        if(strstr(path, labels[i])){
+            truth[i] = 1;
+        }
     }
-    free(b.images);
-    free(b.truth);
 }
 
-batch get_batch(char *filename, int curr, int total)
+data load_data_image_paths(char **paths, int n, char **labels, int k, int h, int w)
+{
+    int i;
+    data d;
+    d.shallow = 0;
+    d.X.rows = n;
+    d.X.vals = calloc(d.X.rows, sizeof(float*));
+    d.X.cols = 0;
+    d.y = make_matrix(n, k);
+
+    for(i = 0; i < n; ++i){
+        image im = load_image(paths[i], h, w);
+        d.X.vals[i] = im.data;
+        d.X.cols = im.h*im.w*im.c;
+        fill_truth(paths[i], labels, k, d.y.vals[i]);
+    }
+    return d;
+}
+
+data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w)
 {
     list *plist = get_paths(filename);
     char **paths = (char **)list_to_array(plist);
-    int i;
-    int start = curr*plist->size/total;
-    int end = (curr+1)*plist->size/total;
-    batch b = make_batch(end-start, 2);
-    for(i = start; i < end; ++i){
-        b.images[i-start] = load_image(paths[i]);
-        b.truth[i-start][0] = get_truth(paths[i]);
-    }
+    data d = load_data_image_paths(paths, plist->size, labels, k, h, w);
     free_list_contents(plist);
     free_list(plist);
     free(paths);
-    return b;
+    return d;
 }
 
-batch random_batch(char *filename, int n)
+void free_data(data d)
+{
+    if(!d.shallow){
+        free_matrix(d.X);
+        free_matrix(d.y);
+    }else{
+        free(d.X.vals);
+        free(d.y.vals);
+    }
+}
+
+data load_data_image_pathfile_part(char *filename, int part, int total, char **labels, int k, int h, int w)
 {
     list *plist = get_paths(filename);
     char **paths = (char **)list_to_array(plist);
+    int start = part*plist->size/total;
+    int end = (part+1)*plist->size/total;
+    data d = load_data_image_paths(paths+start, end-start, labels, k, h, w);
+    free_list_contents(plist);
+    free_list(plist);
+    free(paths);
+    return d;
+}
+
+data load_data_image_pathfile_random(char *filename, int n, char **labels, int k, int h, int w)
+{
     int i;
-    batch b = make_batch(n, 2);
+    list *plist = get_paths(filename);
+    char **paths = (char **)list_to_array(plist);
+    char **random_paths = calloc(n, sizeof(char*));
     for(i = 0; i < n; ++i){
         int index = rand()%plist->size;
-        b.images[i] = load_image(paths[index]);
-        normalize_image(b.images[i]);
-        b.truth[i][0] = get_truth(paths[index]);
+        random_paths[i] = paths[index];
+        if(i == 0) printf("%s\n", paths[index]);
     }
+    data d = load_data_image_paths(random_paths, n, labels, k, h, w);
     free_list_contents(plist);
     free_list(plist);
     free(paths);
-    return b;
+    free(random_paths);
+    return d;
 }
+
+data load_categorical_data_csv(char *filename, int target, int k)
+{
+    data d;
+    d.shallow = 0;
+    matrix X = csv_to_matrix(filename);
+    float *truth_1d = pop_column(&X, target);
+    float **truth = one_hot_encode(truth_1d, X.rows, k);
+    matrix y;
+    y.rows = X.rows;
+    y.cols = k;
+    y.vals = truth;
+    d.X = X;
+    d.y = y;
+    free(truth_1d);
+    return d;
+}
+
+data load_cifar10_data(char *filename)
+{
+    data d;
+    d.shallow = 0;
+    long i,j;
+    matrix X = make_matrix(10000, 3072);
+    matrix y = make_matrix(10000, 10);
+    d.X = X;
+    d.y = y;
+
+    FILE *fp = fopen(filename, "rb");
+    if(!fp) file_error(filename);
+    for(i = 0; i < 10000; ++i){
+        unsigned char bytes[3073];
+        fread(bytes, 1, 3073, fp);
+        int class = bytes[0];
+        y.vals[i][class] = 1;
+        for(j = 0; j < X.cols; ++j){
+            X.vals[i][j] = (double)bytes[j+1];
+        }
+    }
+	translate_data_rows(d, -144);
+	scale_data_rows(d, 1./128);
+	//normalize_data_rows(d);
+    fclose(fp);
+    return d;
+}
+
+data load_all_cifar10()
+{
+    data d;
+    d.shallow = 0;
+    int i,j,b;
+    matrix X = make_matrix(50000, 3072);
+    matrix y = make_matrix(50000, 10);
+    d.X = X;
+    d.y = y;
+
+    
+    for(b = 0; b < 5; ++b){
+        char buff[256];
+        sprintf(buff, "data/cifar10/data_batch_%d.bin", b+1);
+        FILE *fp = fopen(buff, "rb");
+        if(!fp) file_error(buff);
+        for(i = 0; i < 10000; ++i){
+            unsigned char bytes[3073];
+            fread(bytes, 1, 3073, fp);
+            int class = bytes[0];
+            y.vals[i+b*10000][class] = 1;
+            for(j = 0; j < X.cols; ++j){
+                X.vals[i+b*10000][j] = (double)bytes[j+1];
+            }
+        }
+        fclose(fp);
+    }
+    //normalize_data_rows(d);
+	translate_data_rows(d, -144);
+	scale_data_rows(d, 1./128);
+    return d;
+}
+
+void randomize_data(data d)
+{
+    int i;
+    for(i = d.X.rows-1; i > 0; --i){
+        int index = rand()%i;
+        float *swap = d.X.vals[index];
+        d.X.vals[index] = d.X.vals[i];
+        d.X.vals[i] = swap;
+
+        swap = d.y.vals[index];
+        d.y.vals[index] = d.y.vals[i];
+        d.y.vals[i] = swap;
+    }
+}
+
+void scale_data_rows(data d, float s)
+{
+    int i;
+    for(i = 0; i < d.X.rows; ++i){
+        scale_array(d.X.vals[i], d.X.cols, s);
+    }
+}
+
+void translate_data_rows(data d, float s)
+{
+    int i;
+    for(i = 0; i < d.X.rows; ++i){
+        translate_array(d.X.vals[i], d.X.cols, s);
+    }
+}
+
+void normalize_data_rows(data d)
+{
+    int i;
+    for(i = 0; i < d.X.rows; ++i){
+        normalize_array(d.X.vals[i], d.X.cols);
+    }
+}
+
+data *split_data(data d, int part, int total)
+{
+    data *split = calloc(2, sizeof(data));
+    int i;
+    int start = part*d.X.rows/total;
+    int end = (part+1)*d.X.rows/total;
+    data train;
+    data test;
+    train.shallow = test.shallow = 1;
+
+    test.X.rows = test.y.rows = end-start;
+    train.X.rows = train.y.rows = d.X.rows - (end-start);
+    train.X.cols = test.X.cols = d.X.cols;
+    train.y.cols = test.y.cols = d.y.cols;
+
+    train.X.vals = calloc(train.X.rows, sizeof(float*));
+    test.X.vals = calloc(test.X.rows, sizeof(float*));
+    train.y.vals = calloc(train.y.rows, sizeof(float*));
+    test.y.vals = calloc(test.y.rows, sizeof(float*));
+
+    for(i = 0; i < start; ++i){
+        train.X.vals[i] = d.X.vals[i];
+        train.y.vals[i] = d.y.vals[i];
+    }
+    for(i = start; i < end; ++i){
+        test.X.vals[i-start] = d.X.vals[i];
+        test.y.vals[i-start] = d.y.vals[i];
+    }
+    for(i = end; i < d.X.rows; ++i){
+        train.X.vals[i-(end-start)] = d.X.vals[i];
+        train.y.vals[i-(end-start)] = d.y.vals[i];
+    }
+    split[0] = train;
+    split[1] = test;
+    return split;
+}
+

--
Gitblit v1.10.0