From d9f1b0b16edeb59281355a855e18a8be343fc33c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 08 Aug 2014 19:04:15 +0000
Subject: [PATCH] probably how maxpool layers should be
---
src/network.c | 130 +++++++++---------------------------------
1 files changed, 29 insertions(+), 101 deletions(-)
diff --git a/src/network.c b/src/network.c
index 7088398..ed927a8 100644
--- a/src/network.c
+++ b/src/network.c
@@ -9,6 +9,7 @@
#include "maxpool_layer.h"
#include "normalization_layer.h"
#include "softmax_layer.h"
+#include "dropout_layer.h"
network make_network(int n, int batch)
{
@@ -25,94 +26,6 @@
return net;
}
-void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
-{
- int i;
- fprintf(fp, "[convolutional]\n");
- if(first) fprintf(fp, "batch=%d\n"
- "height=%d\n"
- "width=%d\n"
- "channels=%d\n",
- l->batch,l->h, l->w, l->c);
- fprintf(fp, "filters=%d\n"
- "size=%d\n"
- "stride=%d\n"
- "activation=%s\n",
- l->n, l->size, l->stride,
- get_activation_string(l->activation));
- fprintf(fp, "data=");
- for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
- for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
- fprintf(fp, "\n\n");
-}
-void print_connected_cfg(FILE *fp, connected_layer *l, int first)
-{
- int i;
- fprintf(fp, "[connected]\n");
- if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
- fprintf(fp, "output=%d\n"
- "activation=%s\n",
- l->outputs,
- get_activation_string(l->activation));
- fprintf(fp, "data=");
- for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
- for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
- fprintf(fp, "\n\n");
-}
-
-void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
-{
- fprintf(fp, "[maxpool]\n");
- if(first) fprintf(fp, "batch=%d\n"
- "height=%d\n"
- "width=%d\n"
- "channels=%d\n",
- l->batch,l->h, l->w, l->c);
- fprintf(fp, "stride=%d\n\n", l->stride);
-}
-
-void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
-{
- fprintf(fp, "[localresponsenormalization]\n");
- if(first) fprintf(fp, "batch=%d\n"
- "height=%d\n"
- "width=%d\n"
- "channels=%d\n",
- l->batch,l->h, l->w, l->c);
- fprintf(fp, "size=%d\n"
- "alpha=%g\n"
- "beta=%g\n"
- "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
-}
-
-void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
-{
- fprintf(fp, "[softmax]\n");
- if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
- fprintf(fp, "\n");
-}
-
-void save_network(network net, char *filename)
-{
- FILE *fp = fopen(filename, "w");
- if(!fp) file_error(filename);
- int i;
- for(i = 0; i < net.n; ++i)
- {
- if(net.types[i] == CONVOLUTIONAL)
- print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
- else if(net.types[i] == CONNECTED)
- print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
- else if(net.types[i] == MAXPOOL)
- print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
- else if(net.types[i] == NORMALIZATION)
- print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
- else if(net.types[i] == SOFTMAX)
- print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
- }
- fclose(fp);
-}
-
#ifdef GPU
void forward_network(network net, float *input, int train)
{
@@ -169,7 +82,7 @@
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
- forward_connected_layer(layer, input, train);
+ forward_connected_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == SOFTMAX){
@@ -187,17 +100,22 @@
forward_normalization_layer(layer, input);
input = layer.output;
}
+ else if(net.types[i] == DROPOUT){
+ if(!train) continue;
+ dropout_layer layer = *(dropout_layer *)net.layers[i];
+ forward_dropout_layer(layer, input);
+ }
}
}
#endif
-void update_network(network net, float step, float momentum, float decay)
+void update_network(network net)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- update_convolutional_layer(layer, step, momentum, decay);
+ update_convolutional_layer(layer);
}
else if(net.types[i] == MAXPOOL){
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -210,7 +128,7 @@
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
- update_connected_layer(layer, step, momentum, decay);
+ update_connected_layer(layer);
}
}
}
@@ -226,6 +144,8 @@
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output;
+ } else if(net.types[i] == DROPOUT){
+ return get_network_output_layer(net, i-1);
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output;
@@ -251,6 +171,8 @@
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta;
+ } else if(net.types[i] == DROPOUT){
+ return get_network_delta_layer(net, i-1);
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta;
@@ -326,17 +248,17 @@
return error;
}
-float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
+float train_network_datum(network net, float *x, float *y)
{
forward_network(net, x, 1);
//int class = get_predicted_class_network(net);
float error = backward_network(net, x, y);
- update_network(net, step, momentum, decay);
+ update_network(net);
//return (y[class]?1:0);
return error;
}
-float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
+float train_network_sgd(network net, data d, int n)
{
int batch = net.batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
@@ -350,9 +272,9 @@
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
}
- float err = train_network_datum(net, X, y, step, momentum, decay);
+ float err = train_network_datum(net, X, y);
sum += err;
- //train_network_datum(net, X, y, step, momentum, decay);
+ //train_network_datum(net, X, y);
/*
float *y = d.y.vals[index];
int class = get_predicted_class_network(net);
@@ -382,7 +304,7 @@
free(y);
return (float)sum/(n*batch);
}
-float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
+float train_network_batch(network net, data d, int n)
{
int i,j;
float sum = 0;
@@ -395,18 +317,18 @@
forward_network(net, x, 1);
sum += backward_network(net, x, y);
}
- update_network(net, step, momentum, decay);
+ update_network(net);
}
return (float)sum/(n*batch);
}
-void train_network(network net, data d, float step, float momentum, float decay)
+void train_network(network net, data d)
{
int i;
int correct = 0;
for(i = 0; i < d.X.rows; ++i){
- correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
+ correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]);
if(i%100 == 0){
visualize_network(net);
cvWaitKey(10);
@@ -430,6 +352,9 @@
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.inputs;
+ } else if(net.types[i] == DROPOUT){
+ dropout_layer layer = *(dropout_layer *) net.layers[i];
+ return layer.inputs;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
@@ -453,6 +378,9 @@
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.outputs;
+ } else if(net.types[i] == DROPOUT){
+ dropout_layer layer = *(dropout_layer *) net.layers[i];
+ return layer.inputs;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
--
Gitblit v1.10.0