From d9f1b0b16edeb59281355a855e18a8be343fc33c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 08 Aug 2014 19:04:15 +0000
Subject: [PATCH] probably how maxpool layers should be

---
 src/network.c |  369 +++++++++++++++++++++++++++++++++++++++++++++-------
 1 files changed, 320 insertions(+), 49 deletions(-)

diff --git a/src/network.c b/src/network.c
index cce673c..ed927a8 100644
--- a/src/network.c
+++ b/src/network.c
@@ -7,18 +7,71 @@
 #include "connected_layer.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
+#include "normalization_layer.h"
 #include "softmax_layer.h"
+#include "dropout_layer.h"
 
-network make_network(int n)
+network make_network(int n, int batch)
 {
     network net;
     net.n = n;
+    net.batch = batch;
     net.layers = calloc(net.n, sizeof(void *));
     net.types = calloc(net.n, sizeof(LAYER_TYPE));
+    net.outputs = 0;
+    net.output = 0;
+    #ifdef GPU
+    net.input_cl = 0;
+    #endif
     return net;
 }
 
-void forward_network(network net, double *input)
+#ifdef GPU
+void forward_network(network net, float *input, int train)
+{
+    cl_setup();
+    size_t size = get_network_input_size(net);
+    if(!net.input_cl){
+        net.input_cl = clCreateBuffer(cl.context,
+            CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error);
+        check_error(cl);
+    }
+    cl_write_array(net.input_cl, input, size);
+    cl_mem input_cl = net.input_cl;
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            forward_convolutional_layer_gpu(layer, input_cl);
+            input_cl = layer.output_cl;
+            input = layer.output;
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            forward_connected_layer(layer, input, train);
+            input = layer.output;
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            forward_softmax_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+            forward_maxpool_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            forward_normalization_layer(layer, input);
+            input = layer.output;
+        }
+    }
+}
+
+#else
+
+void forward_network(network net, float *input, int train)
 {
     int i;
     for(i = 0; i < net.n; ++i){
@@ -42,16 +95,27 @@
             forward_maxpool_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            forward_normalization_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == DROPOUT){
+            if(!train) continue;
+            dropout_layer layer = *(dropout_layer *)net.layers[i];
+            forward_dropout_layer(layer, input);
+        }
     }
 }
+#endif
 
-void update_network(network net, double step)
+void update_network(network net)
 {
     int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer(layer, step, 0.9, .01);
+            update_convolutional_layer(layer);
         }
         else if(net.types[i] == MAXPOOL){
             //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -59,14 +123,17 @@
         else if(net.types[i] == SOFTMAX){
             //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         }
+        else if(net.types[i] == NORMALIZATION){
+            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer, step, .9, 0);
+            update_connected_layer(layer);
         }
     }
 }
 
-double *get_network_output_layer(network net, int i)
+float *get_network_output_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
@@ -77,18 +144,23 @@
     } else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == DROPOUT){
+        return get_network_output_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == NORMALIZATION){
+        normalization_layer layer = *(normalization_layer *)net.layers[i];
+        return layer.output;
     }
     return 0;
 }
-double *get_network_output(network net)
+float *get_network_output(network net)
 {
     return get_network_output_layer(net, net.n-1);
 }
 
-double *get_network_delta_layer(network net, int i)
+float *get_network_delta_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
         convolutional_layer layer = *(convolutional_layer *)net.layers[i];
@@ -99,6 +171,8 @@
     } else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == DROPOUT){
+        return get_network_delta_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta;
@@ -106,16 +180,42 @@
     return 0;
 }
 
-double *get_network_delta(network net)
+float *get_network_delta(network net)
 {
     return get_network_delta_layer(net, net.n-1);
 }
 
-void learn_network(network net, double *input)
+float calculate_error_network(network net, float *truth)
 {
+    float sum = 0;
+    float *delta = get_network_delta(net);
+    float *out = get_network_output(net);
     int i;
-    double *prev_input;
-    double *prev_delta;
+    for(i = 0; i < get_network_output_size(net)*net.batch; ++i){
+        //if(i %get_network_output_size(net) == 0) printf("\n");
+        //printf("%5.2f %5.2f, ", out[i], truth[i]);
+        //if(i == get_network_output_size(net)) printf("\n");
+        delta[i] = truth[i] - out[i];
+        //printf("%.10f, ", out[i]);
+        sum += delta[i]*delta[i];
+    }
+    //printf("\n");
+    return sum;
+}
+
+int get_predicted_class_network(network net)
+{
+    float *out = get_network_output(net);
+    int k = get_network_output_size(net);
+    return max_index(out, k);
+}
+
+float backward_network(network net, float *input, float *truth)
+{
+    float error = calculate_error_network(net, truth);
+    int i;
+    float *prev_input;
+    float *prev_delta;
     for(i = net.n-1; i >= 0; --i){
         if(i == 0){
             prev_input = input;
@@ -126,59 +226,141 @@
         }
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            learn_convolutional_layer(layer, prev_input);
-            if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
+            backward_convolutional_layer(layer, prev_delta);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
             if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
+        }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
             if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            learn_connected_layer(layer, prev_input);
-            if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
+            backward_connected_layer(layer, prev_input, prev_delta);
         }
     }
+    return error;
 }
 
-void train_network_batch(network net, batch b)
+float train_network_datum(network net, float *x, float *y)
+{
+    forward_network(net, x, 1);
+    //int class = get_predicted_class_network(net);
+    float error = backward_network(net, x, y);
+    update_network(net);
+    //return (y[class]?1:0);
+    return error;
+}
+
+float train_network_sgd(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i,j;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        for(j = 0; j < batch; ++j){
+            int index = rand()%d.X.rows;
+            memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
+            memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
+        }
+        float err = train_network_datum(net, X, y);
+        sum += err;
+        //train_network_datum(net, X, y);
+        /*
+        float *y = d.y.vals[index];
+        int class = get_predicted_class_network(net);
+        correct += (y[class]?1:0);
+        */
+
+/*
+        for(j = 0; j < d.y.cols*batch; ++j){
+            printf("%6.3f ", y[j]);
+        }
+        printf("\n");
+        for(j = 0; j < d.y.cols*batch; ++j){
+            printf("%6.3f ", get_network_output(net)[j]);
+        }
+        printf("\n");
+        printf("\n");
+        */
+
+
+        //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
+        //if((i+1)%10 == 0){
+        //    printf("%d: %f\n", (i+1), (float)correct/(i+1));
+        //}
+    }
+    //printf("Accuracy: %f\n",(float) correct/n);
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+float train_network_batch(network net, data d, int n)
 {
     int i,j;
-    int k = get_network_output_size(net);
-    int correct = 0;
-    for(i = 0; i < b.n; ++i){
-        show_image(b.images[i], "Input");
-        forward_network(net, b.images[i].data);
-        image o = get_network_image(net);
-        if(o.h) show_image_collapsed(o, "Output");
-        double *output = get_network_output(net);
-        double *delta = get_network_delta(net);
-        int max_k = 0;
-        double max = 0;
-        for(j = 0; j < k; ++j){
-            delta[j] = b.truth[i][j]-output[j];
-            if(output[j] > max) {
-                max = output[j];
-                max_k = j;
-            }
+    float sum = 0;
+    int batch = 2;
+    for(i = 0; i < n; ++i){
+        for(j = 0; j < batch; ++j){
+            int index = rand()%d.X.rows;
+            float *x = d.X.vals[index];
+            float *y = d.y.vals[index];
+            forward_network(net, x, 1);
+            sum += backward_network(net, x, y);
         }
-        if(b.truth[i][max_k]) ++correct;
-        printf("%f\n", (double)correct/(i+1));
-        learn_network(net, b.images[i].data);
-        update_network(net, .001);
+        update_network(net);
+    }
+    return (float)sum/(n*batch);
+}
+
+
+void train_network(network net, data d)
+{
+    int i;
+    int correct = 0;
+    for(i = 0; i < d.X.rows; ++i){
+        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]);
         if(i%100 == 0){
             visualize_network(net);
-            cvWaitKey(100);
+            cvWaitKey(10);
         }
     }
     visualize_network(net);
-    print_network(net);
     cvWaitKey(100);
-    printf("Accuracy: %f\n", (double)correct/b.n);
+    fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
+}
+
+int get_network_input_size_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.h*layer.w*layer.c;
+    }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.h*layer.w*layer.c;
+    }
+    else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.inputs;
+    } else if(net.types[i] == DROPOUT){
+        dropout_layer layer = *(dropout_layer *) net.layers[i];
+        return layer.inputs;
+    }
+    else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.inputs;
+    }
+    return 0;
 }
 
 int get_network_output_size_layer(network net, int i)
@@ -196,6 +378,9 @@
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
+    } else if(net.types[i] == DROPOUT){
+        dropout_layer layer = *(dropout_layer *) net.layers[i];
+        return layer.inputs;
     }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
@@ -204,12 +389,49 @@
     return 0;
 }
 
+int resize_network(network net, int h, int w, int c)
+{
+    int i;
+    for (i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
+            resize_convolutional_layer(layer, h, w, c);
+            image output = get_convolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }else if(net.types[i] == MAXPOOL){
+            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
+            resize_maxpool_layer(layer, h, w, c);
+            image output = get_maxpool_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }else if(net.types[i] == NORMALIZATION){
+            normalization_layer *layer = (normalization_layer *)net.layers[i];
+            resize_normalization_layer(layer, h, w, c);
+            image output = get_normalization_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }else{
+            error("Cannot resize this type of layer");
+        }
+    }
+    return 0;
+}
+
 int get_network_output_size(network net)
 {
     int i = net.n-1;
     return get_network_output_size_layer(net, i);
 }
 
+int get_network_input_size(network net)
+{
+    return get_network_input_size_layer(net, 0);
+}
+
 image get_network_image_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
@@ -220,6 +442,10 @@
         maxpool_layer layer = *(maxpool_layer *)net.layers[i];
         return get_maxpool_image(layer);
     }
+    else if(net.types[i] == NORMALIZATION){
+        normalization_layer layer = *(normalization_layer *)net.layers[i];
+        return get_normalization_image(layer);
+    }
     return make_empty_image(0,0,0);
 }
 
@@ -235,22 +461,57 @@
 
 void visualize_network(network net)
 {
+    image *prev = 0;
     int i;
     char buff[256];
     for(i = 0; i < net.n; ++i){
         sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            visualize_convolutional_filters(layer, buff);
+            prev = visualize_convolutional_layer(layer, buff, prev);
+        }
+        if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            visualize_normalization_layer(layer, buff);
         }
     } 
 }
 
+float *network_predict(network net, float *input)
+{
+    forward_network(net, input, 0);
+    float *out = get_network_output(net);
+    return out;
+}
+
+matrix network_predict_data(network net, data test)
+{
+    int i,j,b;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        float *out = network_predict(net, X);
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            for(j = 0; j < k; ++j){
+                pred.vals[i+b][j] = out[j+b*k];
+            }
+        }
+    }
+    free(X);
+    return pred;   
+}
+
 void print_network(network net)
 {
     int i,j;
     for(i = 0; i < net.n; ++i){
-        double *output;
+        float *output = 0;
         int n = 0;
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
@@ -274,12 +535,22 @@
             output = layer.output;
             n = layer.inputs;
         }
-        double mean = mean_array(output, n);
-        double vari = variance_array(output, n);
-        printf("Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
+        float mean = mean_array(output, n);
+        float vari = variance_array(output, n);
+        fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
         if(n > 100) n = 100;
-        for(j = 0; j < n; ++j) printf("%f, ", output[j]);
-        if(n == 100)printf(".....\n");
-        printf("\n");
+        for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
+        if(n == 100)fprintf(stderr,".....\n");
+        fprintf(stderr, "\n");
     }
 }
+
+float network_accuracy(network net, data d)
+{
+    matrix guess = network_predict_data(net, d);
+    float acc = matrix_accuracy(d.y, guess);
+    free_matrix(guess);
+    return acc;
+}
+
+

--
Gitblit v1.10.0