From d9f1b0b16edeb59281355a855e18a8be343fc33c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 08 Aug 2014 19:04:15 +0000
Subject: [PATCH] probably how maxpool layers should be

---
 src/network.c |  260 +++++++++++++++++++++++++---------------------------
 1 files changed, 125 insertions(+), 135 deletions(-)

diff --git a/src/network.c b/src/network.c
index b75eddf..ed927a8 100644
--- a/src/network.c
+++ b/src/network.c
@@ -9,6 +9,7 @@
 #include "maxpool_layer.h"
 #include "normalization_layer.h"
 #include "softmax_layer.h"
+#include "dropout_layer.h"
 
 network make_network(int n, int batch)
 {
@@ -25,98 +26,9 @@
     return net;
 }
 
-void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
-{
-    int i;
-    fprintf(fp, "[convolutional]\n");
-    if(first) fprintf(fp,   "batch=%d\n"
-                            "height=%d\n"
-                            "width=%d\n"
-                            "channels=%d\n",
-                            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "filters=%d\n"
-                "size=%d\n"
-                "stride=%d\n"
-                "activation=%s\n",
-                l->n, l->size, l->stride,
-                get_activation_string(l->activation));
-    fprintf(fp, "data=");
-    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
-    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
-    fprintf(fp, "\n\n");
-}
-void print_connected_cfg(FILE *fp, connected_layer *l, int first)
-{
-    int i;
-    fprintf(fp, "[connected]\n");
-    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    fprintf(fp, "output=%d\n"
-            "activation=%s\n",
-            l->outputs,
-            get_activation_string(l->activation));
-    fprintf(fp, "data=");
-    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
-    for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
-    fprintf(fp, "\n\n");
-}
-
-void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
-{
-    fprintf(fp, "[maxpool]\n");
-    if(first) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "stride=%d\n\n", l->stride);
-}
-
-void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
-{
-    fprintf(fp, "[localresponsenormalization]\n");
-    if(first) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "size=%d\n"
-                "alpha=%g\n"
-                "beta=%g\n"
-                "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
-}
-
-void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
-{
-    fprintf(fp, "[softmax]\n");
-    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    fprintf(fp, "\n");
-}
-
-void save_network(network net, char *filename)
-{
-    FILE *fp = fopen(filename, "w");
-    if(!fp) file_error(filename);
-    int i;
-    for(i = 0; i < net.n; ++i)
-    {
-        if(net.types[i] == CONVOLUTIONAL)
-            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
-        else if(net.types[i] == CONNECTED)
-            print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
-        else if(net.types[i] == MAXPOOL)
-            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
-        else if(net.types[i] == NORMALIZATION)
-            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
-        else if(net.types[i] == SOFTMAX)
-            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
-    }
-    fclose(fp);
-}
-
+#ifdef GPU
 void forward_network(network net, float *input, int train)
 {
-    int i;
-    #ifdef GPU
     cl_setup();
     size_t size = get_network_input_size(net);
     if(!net.input_cl){
@@ -126,16 +38,12 @@
     }
     cl_write_array(net.input_cl, input, size);
     cl_mem input_cl = net.input_cl;
-    #endif
+    int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            #ifdef GPU
             forward_convolutional_layer_gpu(layer, input_cl);
             input_cl = layer.output_cl;
-            #else
-            forward_convolutional_layer(layer, input);
-            #endif
             input = layer.output;
         }
         else if(net.types[i] == CONNECTED){
@@ -161,13 +69,53 @@
     }
 }
 
-void update_network(network net, float step, float momentum, float decay)
+#else
+
+void forward_network(network net, float *input, int train)
 {
     int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer(layer, step, momentum, decay);
+            forward_convolutional_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            forward_connected_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            forward_softmax_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+            forward_maxpool_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == NORMALIZATION){
+            normalization_layer layer = *(normalization_layer *)net.layers[i];
+            forward_normalization_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == DROPOUT){
+            if(!train) continue;
+            dropout_layer layer = *(dropout_layer *)net.layers[i];
+            forward_dropout_layer(layer, input);
+        }
+    }
+}
+#endif
+
+void update_network(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            update_convolutional_layer(layer);
         }
         else if(net.types[i] == MAXPOOL){
             //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -180,7 +128,7 @@
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer, step, momentum, decay);
+            update_connected_layer(layer);
         }
     }
 }
@@ -196,6 +144,8 @@
     } else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == DROPOUT){
+        return get_network_output_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
@@ -221,6 +171,8 @@
     } else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == DROPOUT){
+        return get_network_delta_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta;
@@ -238,10 +190,13 @@
     float sum = 0;
     float *delta = get_network_delta(net);
     float *out = get_network_output(net);
-    int i, k = get_network_output_size(net);
-    for(i = 0; i < k; ++i){
-        //printf("%f, ", out[i]);
+    int i;
+    for(i = 0; i < get_network_output_size(net)*net.batch; ++i){
+        //if(i %get_network_output_size(net) == 0) printf("\n");
+        //printf("%5.2f %5.2f, ", out[i], truth[i]);
+        //if(i == get_network_output_size(net)) printf("\n");
         delta[i] = truth[i] - out[i];
+        //printf("%.10f, ", out[i]);
         sum += delta[i]*delta[i];
     }
     //printf("\n");
@@ -293,32 +248,50 @@
     return error;
 }
 
-float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
+float train_network_datum(network net, float *x, float *y)
 {
     forward_network(net, x, 1);
     //int class = get_predicted_class_network(net);
     float error = backward_network(net, x, y);
-    update_network(net, step, momentum, decay);
+    update_network(net);
     //return (y[class]?1:0);
     return error;
 }
 
-float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
+float train_network_sgd(network net, data d, int n)
 {
-    int i;
-    float error = 0;
-    int correct = 0;
-    int pos = 0;
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i,j;
+    float sum = 0;
     for(i = 0; i < n; ++i){
-        int index = rand()%d.X.rows;
-        float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
+        for(j = 0; j < batch; ++j){
+            int index = rand()%d.X.rows;
+            memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
+            memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
+        }
+        float err = train_network_datum(net, X, y);
+        sum += err;
+        //train_network_datum(net, X, y);
+        /*
         float *y = d.y.vals[index];
         int class = get_predicted_class_network(net);
         correct += (y[class]?1:0);
-        if(y[1]){
-            error += err;
-            ++pos;
+        */
+
+/*
+        for(j = 0; j < d.y.cols*batch; ++j){
+            printf("%6.3f ", y[j]);
         }
+        printf("\n");
+        for(j = 0; j < d.y.cols*batch; ++j){
+            printf("%6.3f ", get_network_output(net)[j]);
+        }
+        printf("\n");
+        printf("\n");
+        */
 
 
         //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
@@ -327,33 +300,35 @@
         //}
     }
     //printf("Accuracy: %f\n",(float) correct/n);
-    return error/pos;
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
 }
-float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
+float train_network_batch(network net, data d, int n)
 {
-    int i;
-    int correct = 0;
+    int i,j;
+    float sum = 0;
+    int batch = 2;
     for(i = 0; i < n; ++i){
-        int index = rand()%d.X.rows;
-        float *x = d.X.vals[index];
-        float *y = d.y.vals[index];
-        forward_network(net, x, 1);
-        int class = get_predicted_class_network(net);
-        backward_network(net, x, y);
-        correct += (y[class]?1:0);
+        for(j = 0; j < batch; ++j){
+            int index = rand()%d.X.rows;
+            float *x = d.X.vals[index];
+            float *y = d.y.vals[index];
+            forward_network(net, x, 1);
+            sum += backward_network(net, x, y);
+        }
+        update_network(net);
     }
-    update_network(net, step, momentum, decay);
-    return (float)correct/n;
-
+    return (float)sum/(n*batch);
 }
 
 
-void train_network(network net, data d, float step, float momentum, float decay)
+void train_network(network net, data d)
 {
     int i;
     int correct = 0;
     for(i = 0; i < d.X.rows; ++i){
-        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
+        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]);
         if(i%100 == 0){
             visualize_network(net);
             cvWaitKey(10);
@@ -377,6 +352,9 @@
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.inputs;
+    } else if(net.types[i] == DROPOUT){
+        dropout_layer layer = *(dropout_layer *) net.layers[i];
+        return layer.inputs;
     }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
@@ -400,6 +378,9 @@
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
+    } else if(net.types[i] == DROPOUT){
+        dropout_layer layer = *(dropout_layer *) net.layers[i];
+        return layer.inputs;
     }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
@@ -448,7 +429,7 @@
 
 int get_network_input_size(network net)
 {
-    return get_network_output_size_layer(net, 0);
+    return get_network_input_size_layer(net, 0);
 }
 
 image get_network_image_layer(network net, int i)
@@ -505,15 +486,24 @@
 
 matrix network_predict_data(network net, data test)
 {
-    int i,j;
+    int i,j,b;
     int k = get_network_output_size(net);
     matrix pred = make_matrix(test.X.rows, k);
-    for(i = 0; i < test.X.rows; ++i){
-        float *out = network_predict(net, test.X.vals[i]);
-        for(j = 0; j < k; ++j){
-            pred.vals[i][j] = out[j];
+    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        float *out = network_predict(net, X);
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            for(j = 0; j < k; ++j){
+                pred.vals[i+b][j] = out[j+b*k];
+            }
         }
     }
+    free(X);
     return pred;   
 }
 

--
Gitblit v1.10.0