From d9f1b0b16edeb59281355a855e18a8be343fc33c Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 08 Aug 2014 19:04:15 +0000
Subject: [PATCH] probably how maxpool layers should be

---
 src/parser.c |  246 +++++++++++++++++++++++++++++++++++++++++++------
 1 files changed, 215 insertions(+), 31 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index 5d6aa1c..1656346 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -9,6 +9,7 @@
 #include "maxpool_layer.h"
 #include "normalization_layer.h"
 #include "softmax_layer.h"
+#include "dropout_layer.h"
 #include "list.h"
 #include "option_list.h"
 #include "utils.h"
@@ -21,6 +22,7 @@
 int is_convolutional(section *s);
 int is_connected(section *s);
 int is_maxpool(section *s);
+int is_dropout(section *s);
 int is_softmax(section *s);
 int is_normalization(section *s);
 list *read_cfg(char *filename);
@@ -41,28 +43,39 @@
     free(s);
 }
 
-convolutional_layer *parse_convolutional(list *options, network net, int count)
+convolutional_layer *parse_convolutional(list *options, network *net, int count)
 {
     int i;
     int h,w,c;
+    float learning_rate, momentum, decay;
     int n = option_find_int(options, "filters",1);
     int size = option_find_int(options, "size",1);
     int stride = option_find_int(options, "stride",1);
+    int pad = option_find_int(options, "pad",0);
     char *activation_s = option_find_str(options, "activation", "sigmoid");
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
         h = option_find_int(options, "height",1);
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
     }else{
-        image m =  get_network_image_layer(net, count-1);
+        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
+        momentum = option_find_float_quiet(options, "momentum", net->momentum);
+        decay = option_find_float_quiet(options, "decay", net->decay);
+        image m =  get_network_image_layer(*net, count-1);
         h = m.h;
         w = m.w;
         c = m.c;
         if(h == 0) error("Layer before convolutional layer must output image.");
     }
-    convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride, activation);
+    convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
     char *data = option_find_str(options, "data", 0);
     if(data){
         char *curr = data;
@@ -80,25 +93,60 @@
             curr = next+1;
         }
     }
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    if(biases){
+        char *curr = biases;
+        char *next = biases;
+        int done = 0;
+        for(i = 0; i < n && !done; ++i){
+            while(*++next !='\0' && *next != ',');
+            if(*next == '\0') done = 1;
+            *next = '\0';
+            sscanf(curr, "%g", &layer->biases[i]);
+            curr = next+1;
+        }
+    }
+    if(weights){
+        char *curr = weights;
+        char *next = weights;
+        int done = 0;
+        for(i = 0; i < c*n*size*size && !done; ++i){
+            while(*++next !='\0' && *next != ',');
+            if(*next == '\0') done = 1;
+            *next = '\0';
+            sscanf(curr, "%g", &layer->filters[i]);
+            curr = next+1;
+        }
+    }
     option_unused(options);
     return layer;
 }
 
-connected_layer *parse_connected(list *options, network net, int count)
+connected_layer *parse_connected(list *options, network *net, int count)
 {
     int i;
     int input;
+    float learning_rate, momentum, decay;
     int output = option_find_int(options, "output",1);
-    float dropout = option_find_float(options, "dropout", 0.);
     char *activation_s = option_find_str(options, "activation", "sigmoid");
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
         input = option_find_int(options, "input",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
     }else{
-        input =  get_network_output_size_layer(net, count-1);
+        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
+        momentum = option_find_float_quiet(options, "momentum", net->momentum);
+        decay = option_find_float_quiet(options, "decay", net->decay);
+        input =  get_network_output_size_layer(*net, count-1);
     }
-    connected_layer *layer = make_connected_layer(net.batch, input, output, dropout, activation);
+    connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
     char *data = option_find_str(options, "data", 0);
     if(data){
         char *curr = data;
@@ -120,42 +168,58 @@
     return layer;
 }
 
-softmax_layer *parse_softmax(list *options, network net, int count)
+softmax_layer *parse_softmax(list *options, network *net, int count)
 {
     int input;
     if(count == 0){
         input = option_find_int(options, "input",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
     }else{
-        input =  get_network_output_size_layer(net, count-1);
+        input =  get_network_output_size_layer(*net, count-1);
     }
-    softmax_layer *layer = make_softmax_layer(net.batch, input);
+    softmax_layer *layer = make_softmax_layer(net->batch, input);
     option_unused(options);
     return layer;
 }
 
-maxpool_layer *parse_maxpool(list *options, network net, int count)
+maxpool_layer *parse_maxpool(list *options, network *net, int count)
 {
     int h,w,c;
     int stride = option_find_int(options, "stride",1);
+    int size = option_find_int(options, "size",stride);
     if(count == 0){
         h = option_find_int(options, "height",1);
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
     }else{
-        image m =  get_network_image_layer(net, count-1);
+        image m =  get_network_image_layer(*net, count-1);
         h = m.h;
         w = m.w;
         c = m.c;
         if(h == 0) error("Layer before convolutional layer must output image.");
     }
-    maxpool_layer *layer = make_maxpool_layer(net.batch,h,w,c,stride);
+    maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride);
     option_unused(options);
     return layer;
 }
 
-normalization_layer *parse_normalization(list *options, network net, int count)
+dropout_layer *parse_dropout(list *options, network *net, int count)
+{
+    int input;
+    float probability = option_find_float(options, "probability", .5);
+    if(count == 0){
+        net->batch = option_find_int(options, "batch",1);
+        input = option_find_int(options, "input",1);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    dropout_layer *layer = make_dropout_layer(net->batch,input,probability);
+    option_unused(options);
+    return layer;
+}
+
+normalization_layer *parse_normalization(list *options, network *net, int count)
 {
     int h,w,c;
     int size = option_find_int(options, "size",1);
@@ -166,15 +230,15 @@
         h = option_find_int(options, "height",1);
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
     }else{
-        image m =  get_network_image_layer(net, count-1);
+        image m =  get_network_image_layer(*net, count-1);
         h = m.h;
         w = m.w;
         c = m.c;
         if(h == 0) error("Layer before convolutional layer must output image.");
     }
-    normalization_layer *layer = make_normalization_layer(net.batch,h,w,c,size, alpha, beta, kappa);
+    normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa);
     option_unused(options);
     return layer;
 }
@@ -190,30 +254,29 @@
         section *s = (section *)n->val;
         list *options = s->options;
         if(is_convolutional(s)){
-            convolutional_layer *layer = parse_convolutional(options, net, count);
+            convolutional_layer *layer = parse_convolutional(options, &net, count);
             net.types[count] = CONVOLUTIONAL;
             net.layers[count] = layer;
-            net.batch = layer->batch;
         }else if(is_connected(s)){
-            connected_layer *layer = parse_connected(options, net, count);
+            connected_layer *layer = parse_connected(options, &net, count);
             net.types[count] = CONNECTED;
             net.layers[count] = layer;
-            net.batch = layer->batch;
         }else if(is_softmax(s)){
-            softmax_layer *layer = parse_softmax(options, net, count);
+            softmax_layer *layer = parse_softmax(options, &net, count);
             net.types[count] = SOFTMAX;
             net.layers[count] = layer;
-            net.batch = layer->batch;
         }else if(is_maxpool(s)){
-            maxpool_layer *layer = parse_maxpool(options, net, count);
+            maxpool_layer *layer = parse_maxpool(options, &net, count);
             net.types[count] = MAXPOOL;
             net.layers[count] = layer;
-            net.batch = layer->batch;
         }else if(is_normalization(s)){
-            normalization_layer *layer = parse_normalization(options, net, count);
+            normalization_layer *layer = parse_normalization(options, &net, count);
             net.types[count] = NORMALIZATION;
             net.layers[count] = layer;
-            net.batch = layer->batch;
+        }else if(is_dropout(s)){
+            dropout_layer *layer = parse_dropout(options, &net, count);
+            net.types[count] = DROPOUT;
+            net.layers[count] = layer;
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
@@ -242,6 +305,10 @@
     return (strcmp(s->type, "[max]")==0
             || strcmp(s->type, "[maxpool]")==0);
 }
+int is_dropout(section *s)
+{
+    return (strcmp(s->type, "[dropout]")==0);
+}
 
 int is_softmax(section *s)
 {
@@ -307,3 +374,120 @@
     return sections;
 }
 
+void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
+{
+    int i;
+    fprintf(fp, "[convolutional]\n");
+    if(count == 0) {
+        fprintf(fp,   "batch=%d\n"
+                "height=%d\n"
+                "width=%d\n"
+                "channels=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n",
+                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay);
+    } else {
+        if(l->learning_rate != net.learning_rate)
+                fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+        if(l->momentum != net.momentum)
+                fprintf(fp, "momentum=%g\n", l->momentum);
+        if(l->decay != net.decay)
+                fprintf(fp, "decay=%g\n", l->decay);
+    }
+    fprintf(fp, "filters=%d\n"
+            "size=%d\n"
+            "stride=%d\n"
+            "pad=%d\n"
+            "activation=%s\n",
+            l->n, l->size, l->stride, l->pad,
+            get_activation_string(l->activation));
+    fprintf(fp, "biases=");
+    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+    fprintf(fp, "\n\n");
+}
+void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
+{
+    int i;
+    fprintf(fp, "[connected]\n");
+    if(count == 0){
+        fprintf(fp, "batch=%d\n"
+                "input=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n",
+                l->batch, l->inputs, l->learning_rate, l->momentum, l->decay);
+    } else {
+        if(l->learning_rate != net.learning_rate)
+            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+        if(l->momentum != net.momentum)
+            fprintf(fp, "momentum=%g\n", l->momentum);
+        if(l->decay != net.decay)
+            fprintf(fp, "decay=%g\n", l->decay);
+    }
+    fprintf(fp, "output=%d\n"
+            "activation=%s\n",
+            l->outputs,
+            get_activation_string(l->activation));
+    fprintf(fp, "data=");
+    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
+    for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
+    fprintf(fp, "\n\n");
+}
+
+void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
+{
+    fprintf(fp, "[maxpool]\n");
+    if(count == 0) fprintf(fp,   "batch=%d\n"
+            "height=%d\n"
+            "width=%d\n"
+            "channels=%d\n",
+            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
+}
+
+void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
+{
+    fprintf(fp, "[localresponsenormalization]\n");
+    if(count == 0) fprintf(fp,   "batch=%d\n"
+            "height=%d\n"
+            "width=%d\n"
+            "channels=%d\n",
+            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "size=%d\n"
+            "alpha=%g\n"
+            "beta=%g\n"
+            "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
+}
+
+void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
+{
+    fprintf(fp, "[softmax]\n");
+    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    fprintf(fp, "\n");
+}
+
+void save_network(network net, char *filename)
+{
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+    int i;
+    for(i = 0; i < net.n; ++i)
+    {
+        if(net.types[i] == CONVOLUTIONAL)
+            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
+        else if(net.types[i] == CONNECTED)
+            print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
+        else if(net.types[i] == MAXPOOL)
+            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
+        else if(net.types[i] == NORMALIZATION)
+            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
+        else if(net.types[i] == SOFTMAX)
+            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
+    }
+    fclose(fp);
+}
+

--
Gitblit v1.10.0