From db0397cfaaf488364e3d2e1669dfefae2ee6ea73 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Dec 2015 19:57:10 +0000
Subject: [PATCH] shortcut layers, msr networks
---
src/blas_kernels.cu | 345 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 files changed, 341 insertions(+), 4 deletions(-)
diff --git a/src/blas_kernels.cu b/src/blas_kernels.cu
index 636a9b5..8f05eb9 100644
--- a/src/blas_kernels.cu
+++ b/src/blas_kernels.cu
@@ -1,6 +1,183 @@
+#include "cuda_runtime.h"
+#include "curand.h"
+#include "cublas_v2.h"
+
extern "C" {
#include "blas.h"
#include "cuda.h"
+#include "utils.h"
+}
+
+__global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial)
+{
+ int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (index >= N) return;
+ int f = (index/spatial)%filters;
+
+ x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .00001f);
+}
+
+__global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
+{
+ int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (index >= N) return;
+ int f = (index/spatial)%filters;
+
+ delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+}
+
+extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
+{
+ size_t N = batch*filters*spatial;
+ normalize_delta_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, mean_delta, variance_delta, batch, filters, spatial, delta);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= filters) return;
+ int j,k;
+ variance_delta[i] = 0;
+ for(j = 0; j < batch; ++j){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + i*spatial + k;
+ variance_delta[i] += delta[index]*(x[index] - mean[i]);
+ }
+ }
+ variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
+}
+
+__global__ void accumulate_kernel(float *x, int n, int groups, float *sum)
+{
+ int k;
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= groups) return;
+ sum[i] = 0;
+ for(k = 0; k < n; ++k){
+ sum[i] += x[k*groups + i];
+ }
+}
+
+__global__ void fast_mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+ const int threads = BLOCK;
+ __shared__ float local[threads];
+
+ int id = threadIdx.x;
+ local[id] = 0;
+
+ int filter = blockIdx.x;
+
+ int i, j;
+ for(j = 0; j < batch; ++j){
+ for(i = 0; i < spatial; i += threads){
+ int index = j*spatial*filters + filter*spatial + i + id;
+ local[id] += (i+id < spatial) ? delta[index] : 0;
+ }
+ }
+
+ if(id == 0){
+ mean_delta[filter] = 0;
+ for(i = 0; i < threads; ++i){
+ mean_delta[filter] += local[i];
+ }
+ mean_delta[filter] *= (-1./sqrt(variance[filter] + .00001f));
+ }
+}
+
+__global__ void fast_variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
+{
+ const int threads = BLOCK;
+ __shared__ float local[threads];
+
+ int id = threadIdx.x;
+ local[id] = 0;
+
+ int filter = blockIdx.x;
+
+ int i, j;
+ for(j = 0; j < batch; ++j){
+ for(i = 0; i < spatial; i += threads){
+ int index = j*spatial*filters + filter*spatial + i + id;
+
+ local[id] += (i+id < spatial) ? delta[index]*(x[index] - mean[filter]) : 0;
+ }
+ }
+
+ if(id == 0){
+ variance_delta[filter] = 0;
+ for(i = 0; i < threads; ++i){
+ variance_delta[filter] += local[i];
+ }
+ variance_delta[filter] *= -.5 * pow(variance[filter] + .00001f, (float)(-3./2.));
+ }
+}
+
+
+__global__ void mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= filters) return;
+ int j,k;
+ mean_delta[i] = 0;
+ for (j = 0; j < batch; ++j) {
+ for (k = 0; k < spatial; ++k) {
+ int index = j*filters*spatial + i*spatial + k;
+ mean_delta[i] += delta[index];
+ }
+ }
+ mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
+}
+
+extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+ mean_delta_kernel<<<cuda_gridsize(filters), BLOCK>>>(delta, variance, batch, filters, spatial, mean_delta);
+ check_error(cudaPeekAtLastError());
+}
+
+extern "C" void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+ fast_mean_delta_kernel<<<filters, BLOCK>>>(delta, variance, batch, filters, spatial, mean_delta);
+ check_error(cudaPeekAtLastError());
+}
+
+extern "C" void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
+{
+ fast_variance_delta_kernel<<<filters, BLOCK>>>(x, delta, mean, variance, batch, filters, spatial, variance_delta);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void mean_kernel(float *x, int batch, int filters, int spatial, float *mean)
+{
+ float scale = 1./(batch * spatial);
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= filters) return;
+ int j,k;
+ mean[i] = 0;
+ for(j = 0; j < batch; ++j){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + i*spatial + k;
+ mean[i] += x[index];
+ }
+ }
+ mean[i] *= scale;
+}
+
+__global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
+{
+ float scale = 1./(batch * spatial);
+ int j,k;
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (i >= filters) return;
+ variance[i] = 0;
+ for(j = 0; j < batch; ++j){
+ for(k = 0; k < spatial; ++k){
+ int index = j*filters*spatial + i*spatial + k;
+ variance[i] += pow((x[index] - mean[i]), 2);
+ }
+ }
+ variance[i] *= scale;
}
__global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY)
@@ -9,16 +186,34 @@
if(i < N) Y[OFFY+i*INCY] += ALPHA*X[OFFX+i*INCX];
}
+__global__ void pow_kernel(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if(i < N) Y[i*INCY] = pow(X[i*INCX], ALPHA);
+}
+
+__global__ void const_kernel(int N, float ALPHA, float *X, int INCX)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if(i < N) X[i*INCX] = ALPHA;
+}
+
__global__ void scal_kernel(int N, float ALPHA, float *X, int INCX)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(i < N) X[i*INCX] *= ALPHA;
}
-__global__ void mask_kernel(int n, float *x, float *mask)
+__global__ void fill_kernel(int N, float ALPHA, float *X, int INCX)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
- if(i < n && mask[i] == 0) x[i] = 0;
+ if(i < N) X[i*INCX] = ALPHA;
+}
+
+__global__ void mask_kernel(int n, float *x, float mask_num, float *mask)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if(i < n && mask[i] == mask_num) x[i] = mask_num;
}
__global__ void copy_kernel(int N, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY)
@@ -27,11 +222,111 @@
if(i < N) Y[i*INCY + OFFY] = X[i*INCX + OFFX];
}
+__global__ void mul_kernel(int N, float *X, int INCX, float *Y, int INCY)
+{
+ int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if(i < N) Y[i*INCY] *= X[i*INCX];
+}
+
+
+extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
+{
+ size_t N = batch*filters*spatial;
+ normalize_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, batch, filters, spatial);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void fast_mean_kernel(float *x, int batch, int filters, int spatial, float *mean)
+{
+ const int threads = BLOCK;
+ __shared__ float local[threads];
+
+ int id = threadIdx.x;
+ local[id] = 0;
+
+ int filter = blockIdx.x;
+
+ int i, j;
+ for(j = 0; j < batch; ++j){
+ for(i = 0; i < spatial; i += threads){
+ int index = j*spatial*filters + filter*spatial + i + id;
+ local[id] += (i+id < spatial) ? x[index] : 0;
+ }
+ }
+
+ if(id == 0){
+ mean[filter] = 0;
+ for(i = 0; i < threads; ++i){
+ mean[filter] += local[i];
+ }
+ mean[filter] /= spatial * batch;
+ }
+}
+
+__global__ void fast_variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
+{
+ const int threads = BLOCK;
+ __shared__ float local[threads];
+
+ int id = threadIdx.x;
+ local[id] = 0;
+
+ int filter = blockIdx.x;
+
+ int i, j;
+ for(j = 0; j < batch; ++j){
+ for(i = 0; i < spatial; i += threads){
+ int index = j*spatial*filters + filter*spatial + i + id;
+
+ local[id] += (i+id < spatial) ? pow((x[index] - mean[filter]), 2) : 0;
+ }
+ }
+
+ if(id == 0){
+ variance[filter] = 0;
+ for(i = 0; i < threads; ++i){
+ variance[filter] += local[i];
+ }
+ variance[filter] /= spatial * batch;
+ }
+}
+
+extern "C" void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean)
+{
+ fast_mean_kernel<<<filters, BLOCK>>>(x, batch, filters, spatial, mean);
+ check_error(cudaPeekAtLastError());
+}
+
+extern "C" void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
+{
+ fast_variance_kernel<<<filters, BLOCK>>>(x, mean, batch, filters, spatial, variance);
+ check_error(cudaPeekAtLastError());
+}
+
+
+extern "C" void mean_gpu(float *x, int batch, int filters, int spatial, float *mean)
+{
+ mean_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, batch, filters, spatial, mean);
+ check_error(cudaPeekAtLastError());
+}
+
+extern "C" void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
+{
+ variance_kernel<<<cuda_gridsize(filters), BLOCK>>>(x, mean, batch, filters, spatial, variance);
+ check_error(cudaPeekAtLastError());
+}
+
extern "C" void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY)
{
axpy_ongpu_offset(N, ALPHA, X, 0, INCX, Y, 0, INCY);
}
+extern "C" void pow_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY)
+{
+ pow_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX, Y, INCY);
+ check_error(cudaPeekAtLastError());
+}
+
extern "C" void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY)
{
axpy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, OFFX, INCX, Y, OFFY, INCY);
@@ -43,15 +338,27 @@
copy_ongpu_offset(N, X, 0, INCX, Y, 0, INCY);
}
+extern "C" void mul_ongpu(int N, float * X, int INCX, float * Y, int INCY)
+{
+ mul_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, INCX, Y, INCY);
+ check_error(cudaPeekAtLastError());
+}
+
extern "C" void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY)
{
copy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, OFFX, INCX, Y, OFFY, INCY);
check_error(cudaPeekAtLastError());
}
-extern "C" void mask_ongpu(int N, float * X, float * mask)
+extern "C" void mask_ongpu(int N, float * X, float mask_num, float * mask)
{
- mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask);
+ mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask_num, mask);
+ check_error(cudaPeekAtLastError());
+}
+
+extern "C" void const_ongpu(int N, float ALPHA, float * X, int INCX)
+{
+ const_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
check_error(cudaPeekAtLastError());
}
@@ -60,3 +367,33 @@
scal_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
check_error(cudaPeekAtLastError());
}
+
+extern "C" void fill_ongpu(int N, float ALPHA, float * X, int INCX)
+{
+ fill_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
+ check_error(cudaPeekAtLastError());
+}
+
+__global__ void shortcut_kernel(int size, float *out, int w, int h, int c, int batch, int sample, float *add, int stride, int c2, int min_c)
+{
+ int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+ if (id >= size) return;
+ int i = id % (w/sample);
+ id /= (w/sample);
+ int j = id % (h/sample);
+ id /= (h/sample);
+ int k = id % min_c;
+ id /= min_c;
+ int b = id;
+ int out_index = i*sample + w*(j*sample + h*(k + c*b));
+ int add_index = b*w*stride/sample*h*stride/sample*c2 + i*stride + w*stride/sample*(j*stride + h*stride/sample*k);
+ out[out_index] += add[add_index];
+}
+
+extern "C" void shortcut_gpu(float *out, int w, int h, int c, int batch, int sample, float *add, int stride, int c2)
+{
+ int min_c = (c < c2) ? c : c2;
+ int size = batch * w/sample * h/sample * min_c;
+ shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, out, w, h, c, batch, sample, add, stride, c2, min_c);
+ check_error(cudaPeekAtLastError());
+}
--
Gitblit v1.10.0