From db0397cfaaf488364e3d2e1669dfefae2ee6ea73 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Dec 2015 19:57:10 +0000
Subject: [PATCH] shortcut layers, msr networks
---
src/connected_layer.c | 38 ++++++++++++++++++++++----------------
1 files changed, 22 insertions(+), 16 deletions(-)
diff --git a/src/connected_layer.c b/src/connected_layer.c
index 4323505..2d83dd9 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -25,13 +25,13 @@
l.weight_updates = calloc(inputs*outputs, sizeof(float));
l.bias_updates = calloc(outputs, sizeof(float));
- l.weights = calloc(inputs*outputs, sizeof(float));
+ l.weights = calloc(outputs*inputs, sizeof(float));
l.biases = calloc(outputs, sizeof(float));
//float scale = 1./sqrt(inputs);
float scale = sqrt(2./inputs);
- for(i = 0; i < inputs*outputs; ++i){
+ for(i = 0; i < outputs*inputs; ++i){
l.weights[i] = 2*scale*rand_uniform() - scale;
}
@@ -40,10 +40,10 @@
}
#ifdef GPU
- l.weights_gpu = cuda_make_array(l.weights, inputs*outputs);
+ l.weights_gpu = cuda_make_array(l.weights, outputs*inputs);
l.biases_gpu = cuda_make_array(l.biases, outputs);
- l.weight_updates_gpu = cuda_make_array(l.weight_updates, inputs*outputs);
+ l.weight_updates_gpu = cuda_make_array(l.weight_updates, outputs*inputs);
l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs);
l.output_gpu = cuda_make_array(l.output, outputs*batch);
@@ -76,7 +76,7 @@
float *a = state.input;
float *b = l.weights;
float *c = l.output;
- gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+ gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
activate_array(l.output, l.outputs*l.batch, l.activation);
}
@@ -87,11 +87,11 @@
for(i = 0; i < l.batch; ++i){
axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
}
- int m = l.inputs;
+ int m = l.outputs;
int k = l.batch;
- int n = l.outputs;
- float *a = state.input;
- float *b = l.delta;
+ int n = l.inputs;
+ float *a = l.delta;
+ float *b = state.input;
float *c = l.weight_updates;
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
@@ -103,7 +103,7 @@
b = l.weights;
c = state.delta;
- if(c) gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
+ if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
#ifdef GPU
@@ -146,8 +146,14 @@
float * a = state.input;
float * b = l.weights_gpu;
float * c = l.output_gpu;
- gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
+ gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
+
+/*
+ cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
+ float avg = mean_array(l.output, l.outputs*l.batch);
+ printf("%f\n", avg);
+ */
}
void backward_connected_layer_gpu(connected_layer l, network_state state)
@@ -157,11 +163,11 @@
for(i = 0; i < l.batch; ++i){
axpy_ongpu_offset(l.outputs, 1, l.delta_gpu, i*l.outputs, 1, l.bias_updates_gpu, 0, 1);
}
- int m = l.inputs;
+ int m = l.outputs;
int k = l.batch;
- int n = l.outputs;
- float * a = state.input;
- float * b = l.delta_gpu;
+ int n = l.inputs;
+ float * a = l.delta_gpu;
+ float * b = state.input;
float * c = l.weight_updates_gpu;
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
@@ -173,6 +179,6 @@
b = l.weights_gpu;
c = state.delta;
- if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
+ if(c) gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
#endif
--
Gitblit v1.10.0