From db0397cfaaf488364e3d2e1669dfefae2ee6ea73 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 14 Dec 2015 19:57:10 +0000
Subject: [PATCH] shortcut layers, msr networks

---
 src/imagenet.c |  111 ++++++++++++++++++++++++++++++++++++++-----------------
 1 files changed, 77 insertions(+), 34 deletions(-)

diff --git a/src/imagenet.c b/src/imagenet.c
index 906dbd4..dece952 100644
--- a/src/imagenet.c
+++ b/src/imagenet.c
@@ -2,12 +2,17 @@
 #include "utils.h"
 #include "parser.h"
 
+#ifdef OPENCV
+#include "opencv2/highgui/highgui_c.h"
+#endif
+
 void train_imagenet(char *cfgfile, char *weightfile)
 {
     data_seed = time(0);
     srand(time(0));
     float avg_loss = -1;
     char *base = basecfg(cfgfile);
+    char *backup_directory = "/home/pjreddie/backup/";
     printf("%s\n", base);
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
@@ -15,44 +20,60 @@
     }
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 1024;
-    int i = net.seen/imgs;
-    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+    char **labels = get_labels("data/inet.labels.list");
     list *plist = get_paths("/data/imagenet/cls.train.list");
     char **paths = (char **)list_to_array(plist);
     printf("%d\n", plist->size);
+    int N = plist->size;
     clock_t time;
     pthread_t load_thread;
     data train;
     data buffer;
-    load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
-    while(1){
-        ++i;
+
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.paths = paths;
+    args.classes = 1000;
+    args.n = imgs;
+    args.m = N;
+    args.labels = labels;
+    args.d = &buffer;
+    args.type = CLASSIFICATION_DATA;
+
+    load_thread = load_data_in_thread(args);
+    int epoch = (*net.seen)/N;
+    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
 
-/*
-        image im = float_to_image(256, 256, 3, train.X.vals[114]);
-        show_image(im, "training");
-        cvWaitKey(0);
-        */
-
-        load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
+        load_thread = load_data_in_thread(args);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
         float loss = train_network(net, train);
-        net.seen += imgs;
         if(avg_loss == -1) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
-        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
+        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
         free_data(train);
-        //if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97;
-        if(i%100==0){
+        if(*net.seen/N > epoch){
+            epoch = *net.seen/N;
             char buff[256];
-            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
             save_weights(net, buff);
         }
     }
+    char buff[256];
+    sprintf(buff, "%s/%s.weights", backup_directory, base);
+    save_weights(net, buff);
+
+    pthread_join(load_thread, 0);
+    free_data(buffer);
+    free_network(net);
+    free_ptrs((void**)labels, 1000);
+    free_ptrs((void**)paths, plist->size);
+    free_list(plist);
+    free(base);
 }
 
 void validate_imagenet(char *filename, char *weightfile)
@@ -64,9 +85,10 @@
     }
     srand(time(0));
 
-    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
+    char **labels = get_labels("data/inet.labels.list");
+    //list *plist = get_paths("data/inet.suppress.list");
+    list *plist = get_paths("data/inet.val.list");
 
-    list *plist = get_paths("/data/imagenet/cls.val.list");
     char **paths = (char **)list_to_array(plist);
     int m = plist->size;
     free_list(plist);
@@ -78,7 +100,19 @@
     int num = (i+1)*m/splits - i*m/splits;
 
     data val, buffer;
-    pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
+
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.paths = paths;
+    args.classes = 1000;
+    args.n = num;
+    args.m = 0;
+    args.labels = labels;
+    args.d = &buffer;
+    args.type = CLASSIFICATION_DATA;
+
+    pthread_t load_thread = load_data_in_thread(args);
     for(i = 1; i <= splits; ++i){
         time=clock();
 
@@ -87,11 +121,14 @@
 
         num = (i+1)*m/splits - i*m/splits;
         char **part = paths+(i*m/splits);
-        if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
+        if(i != splits){
+            args.paths = part;
+            load_thread = load_data_in_thread(args);
+        }
         printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
 
         time=clock();
-        float *acc = network_accuracies(net, val);
+        float *acc = network_accuracies(net, val, 5);
         avg_acc += acc[0];
         avg_top5 += acc[1];
         printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
@@ -99,37 +136,42 @@
     }
 }
 
-void test_imagenet(char *cfgfile, char *weightfile)
+void test_imagenet(char *cfgfile, char *weightfile, char *filename)
 {
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
     set_batch_network(&net, 1);
-    //imgs=1;
     srand(2222222);
     int i = 0;
-    char **names = get_labels("cfg/shortnames.txt");
+    char **names = get_labels("data/shortnames.txt");
     clock_t time;
-    char filename[256];
     int indexes[10];
+    char buff[256];
+    char *input = buff;
     while(1){
-        fgets(filename, 256, stdin);
-        strtok(filename, "\n");
-        image im = load_image_color(filename, 256, 256);
-        scale_image(im, 2.);
-        translate_image(im, -1.);
-        printf("%d %d %d\n", im.h, im.w, im.c);
+        if(filename){
+            strncpy(input, filename, 256);
+        }else{
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            input = fgets(input, 256, stdin);
+            if(!input) return;
+            strtok(input, "\n");
+        }
+        image im = load_image_color(input, 256, 256);
         float *X = im.data;
         time=clock();
         float *predictions = network_predict(net, X);
         top_predictions(net, 10, indexes);
-        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
+        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
         for(i = 0; i < 10; ++i){
             int index = indexes[i];
             printf("%s: %f\n", names[index], predictions[index]);
         }
         free_image(im);
+        if (filename) break;
     }
 }
 
@@ -142,7 +184,8 @@
 
     char *cfg = argv[3];
     char *weights = (argc > 4) ? argv[4] : 0;
-    if(0==strcmp(argv[2], "test")) test_imagenet(cfg, weights);
+    char *filename = (argc > 5) ? argv[5]: 0;
+    if(0==strcmp(argv[2], "test")) test_imagenet(cfg, weights, filename);
     else if(0==strcmp(argv[2], "train")) train_imagenet(cfg, weights);
     else if(0==strcmp(argv[2], "valid")) validate_imagenet(cfg, weights);
 }

--
Gitblit v1.10.0