From dbdd31ee211fe8b1ac7e93ceadf7b34b8d304f34 Mon Sep 17 00:00:00 2001
From: Roland Singer <roland.singer@desertbit.com>
Date: Wed, 22 Aug 2018 11:56:41 +0000
Subject: [PATCH] updated README to include information about learning rate adjustment for multiple GPUs

---
 README.md |    4 +++-
 1 files changed, 3 insertions(+), 1 deletions(-)

diff --git a/README.md b/README.md
index 963c401..18d3f15 100644
--- a/README.md
+++ b/README.md
@@ -227,7 +227,9 @@
 
 1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg darknet53.conv.74`
 
-2. Then stop and by using partially-trained model `/backup/yolov3-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg /backup/yolov3-voc_1000.weights -gpus 0,1,2,3`
+2. Adjust the learning rate (`cfg/yolov3-voc.cfg`) to fit the amount of GPUs. The learning rate should be equal to `0.001`, regardless of how many GPUs are used for training. So `learning_rate * GPUs = 0.001`. For 4 GPUs adjust the value to `learning_rate = 0.00025`.
+
+3. Then stop and by using partially-trained model `/backup/yolov3-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg /backup/yolov3-voc_1000.weights -gpus 0,1,2,3`
 
 https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
 

--
Gitblit v1.10.0