From dcb000b553d051429a49c8729dc5b1af632e8532 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 12 Mar 2015 05:20:15 +0000
Subject: [PATCH] refactoring and added DARK ZONE

---
 src/dropout_layer_kernels.cu   |   18 
 src/softmax_layer_kernels.cu   |   14 
 src/convolutional_layer.h      |   19 
 src/maxpool_layer_kernels.cu   |    8 
 src/crop_layer.c               |    6 
 src/crop_layer.h               |    5 
 src/deconvolutional_layer.h    |   19 
 src/convolutional_kernels.cu   |   33 
 src/dropout_layer.c            |   21 
 src/maxpool_layer.c            |   10 
 src/cost_layer.h               |    9 
 src/network.c                  |  197 ++-----
 src/deconvolutional_kernels.cu |   26 
 src/maxpool_layer.h            |    9 
 src/normalization_layer.c      |   15 
 src/cost_layer.c               |   36 
 src/normalization_layer.h      |    5 
 src/softmax_layer.h            |   11 
 src/network.h                  |   12 
 src/params.h                   |   12 
 src/dropout_layer.h            |   11 
 src/network_kernels.cu         |  133 ++---
 src/connected_layer.c          |   80 --
 src/connected_layer.h          |   20 
 src/data.c                     |   86 ++
 src/detection_layer.h          |   10 
 src/softmax_layer.c            |   10 
 src/deconvolutional_layer.c    |   32 
 src/data.h                     |    4 
 src/detection_layer.c          |   95 ++-
 /dev/null                      |   14 
 src/detection.c                |   37 
 src/convolutional_layer.c      |   34 
 src/parser.c                   |  474 +++++------------
 src/captcha.c                  |    2 
 src/crop_layer_kernels.cu      |    6 
 36 files changed, 640 insertions(+), 893 deletions(-)

diff --git a/src/captcha.c b/src/captcha.c
index 17b3f06..40a4082 100644
--- a/src/captcha.c
+++ b/src/captcha.c
@@ -16,7 +16,7 @@
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 1024;
     int i = net.seen/imgs;
-    list *plist = get_paths("/data/captcha/train.list");
+    list *plist = get_paths("/data/captcha/train.base");
     char **paths = (char **)list_to_array(plist);
     printf("%d\n", plist->size);
     clock_t time;
diff --git a/src/connected_layer.c b/src/connected_layer.c
index 642570c..9df0e8f 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -9,15 +9,11 @@
 #include <stdlib.h>
 #include <string.h>
 
-connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay)
+connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
 {
     int i;
     connected_layer *layer = calloc(1, sizeof(connected_layer));
 
-    layer->learning_rate = learning_rate;
-    layer->momentum = momentum;
-    layer->decay = decay;
-
     layer->inputs = inputs;
     layer->outputs = outputs;
     layer->batch=batch;
@@ -59,41 +55,17 @@
     return layer;
 }
 
-void secret_update_connected_layer(connected_layer *layer)
+void update_connected_layer(connected_layer layer, float learning_rate, float momentum, float decay)
 {
-    int n = layer->outputs*layer->inputs;
-    float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1);
-    float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1))
-                * sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1));
-    float cos = dot/mag;
-    if(cos > .3) layer->learning_rate *= 1.1;
-    else if (cos < -.3) layer-> learning_rate /= 1.1;
+    axpy_cpu(layer.outputs, learning_rate, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.outputs, momentum, layer.bias_updates, 1);
 
-    scal_cpu(n, layer->momentum, layer->weight_prev, 1);
-    axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1);
-    scal_cpu(n, 0, layer->weight_updates, 1);
-
-    scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1);
-    axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1);
-    scal_cpu(layer->outputs, 0, layer->bias_updates, 1);
-
-    axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1);
-
-    axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1);
-    axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1);
+    axpy_cpu(layer.inputs*layer.outputs, -decay, layer.weights, 1, layer.weight_updates, 1);
+    axpy_cpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates, 1, layer.weights, 1);
+    scal_cpu(layer.inputs*layer.outputs, momentum, layer.weight_updates, 1);
 }
 
-void update_connected_layer(connected_layer layer)
-{
-    axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
-    scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
-
-    axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1);
-    axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
-    scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
-}
-
-void forward_connected_layer(connected_layer layer, float *input)
+void forward_connected_layer(connected_layer layer, network_state state)
 {
     int i;
     for(i = 0; i < layer.batch; ++i){
@@ -102,14 +74,14 @@
     int m = layer.batch;
     int k = layer.inputs;
     int n = layer.outputs;
-    float *a = input;
+    float *a = state.input;
     float *b = layer.weights;
     float *c = layer.output;
     gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
     activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
 }
 
-void backward_connected_layer(connected_layer layer, float *input, float *delta)
+void backward_connected_layer(connected_layer layer, network_state state)
 {
     int i;
     float alpha = 1./layer.batch;
@@ -120,7 +92,7 @@
     int m = layer.inputs;
     int k = layer.batch;
     int n = layer.outputs;
-    float *a = input;
+    float *a = state.input;
     float *b = layer.delta;
     float *c = layer.weight_updates;
     gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
@@ -131,7 +103,7 @@
 
     a = layer.delta;
     b = layer.weights;
-    c = delta;
+    c = state.delta;
 
     if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
 }
@@ -154,23 +126,17 @@
     cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
 }
 
-void update_connected_layer_gpu(connected_layer layer)
+void update_connected_layer_gpu(connected_layer layer, float learning_rate, float momentum, float decay)
 {
-/*
-    cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
-    cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
-    printf("Weights: %f updates: %f\n", mag_array(layer.weights, layer.inputs*layer.outputs), layer.learning_rate*mag_array(layer.weight_updates, layer.inputs*layer.outputs));
-*/
+    axpy_ongpu(layer.outputs, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
+    scal_ongpu(layer.outputs, momentum, layer.bias_updates_gpu, 1);
 
-    axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
-    scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_gpu, 1);
-
-    axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
-    axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
-    scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_gpu, 1);
+    axpy_ongpu(layer.inputs*layer.outputs, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
+    axpy_ongpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
+    scal_ongpu(layer.inputs*layer.outputs, momentum, layer.weight_updates_gpu, 1);
 }
 
-void forward_connected_layer_gpu(connected_layer layer, float * input)
+void forward_connected_layer_gpu(connected_layer layer, network_state state)
 {
     int i;
     for(i = 0; i < layer.batch; ++i){
@@ -179,14 +145,14 @@
     int m = layer.batch;
     int k = layer.inputs;
     int n = layer.outputs;
-    float * a = input;
+    float * a = state.input;
     float * b = layer.weights_gpu;
     float * c = layer.output_gpu;
     gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
     activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation);
 }
 
-void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta)
+void backward_connected_layer_gpu(connected_layer layer, network_state state)
 {
     float alpha = 1./layer.batch;
     int i;
@@ -197,7 +163,7 @@
     int m = layer.inputs;
     int k = layer.batch;
     int n = layer.outputs;
-    float * a = input;
+    float * a = state.input;
     float * b = layer.delta_gpu;
     float * c = layer.weight_updates_gpu;
     gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
@@ -208,7 +174,7 @@
 
     a = layer.delta_gpu;
     b = layer.weights_gpu;
-    c = delta;
+    c = state.delta;
 
     if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
 }
diff --git a/src/connected_layer.h b/src/connected_layer.h
index 921f06f..2642599 100644
--- a/src/connected_layer.h
+++ b/src/connected_layer.h
@@ -2,12 +2,9 @@
 #define CONNECTED_LAYER_H
 
 #include "activations.h"
+#include "params.h"
 
 typedef struct{
-    float learning_rate;
-    float momentum;
-    float decay;
-
     int batch;
     int inputs;
     int outputs;
@@ -37,17 +34,16 @@
 
 } connected_layer;
 
-void secret_update_connected_layer(connected_layer *layer);
-connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay);
+connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation);
 
-void forward_connected_layer(connected_layer layer, float *input);
-void backward_connected_layer(connected_layer layer, float *input, float *delta);
-void update_connected_layer(connected_layer layer);
+void forward_connected_layer(connected_layer layer, network_state state);
+void backward_connected_layer(connected_layer layer, network_state state);
+void update_connected_layer(connected_layer layer, float learning_rate, float momentum, float decay);
 
 #ifdef GPU
-void forward_connected_layer_gpu(connected_layer layer, float * input);
-void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta);
-void update_connected_layer_gpu(connected_layer layer);
+void forward_connected_layer_gpu(connected_layer layer, network_state state);
+void backward_connected_layer_gpu(connected_layer layer, network_state state);
+void update_connected_layer_gpu(connected_layer layer, float learning_rate, float momentum, float decay);
 void push_connected_layer(connected_layer layer);
 void pull_connected_layer(connected_layer layer);
 #endif
diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index bcf307f..77304aa 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -54,7 +54,7 @@
     check_error(cudaPeekAtLastError());
 }
 
-extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float *in)
+extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
 {
     int i;
     int m = layer.n;
@@ -65,7 +65,7 @@
     bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
 
     for(i = 0; i < layer.batch; ++i){
-        im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
+        im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
         float * a = layer.filters_gpu;
         float * b = layer.col_image_gpu;
         float * c = layer.output_gpu;
@@ -74,7 +74,7 @@
     activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation);
 }
 
-extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, float *in, float *delta_gpu)
+extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
 {
     float alpha = 1./layer.batch;
     int i;
@@ -86,17 +86,17 @@
     gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
     backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k);
 
-    if(delta_gpu) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_gpu, 1);
+    if(state.delta) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, state.delta, 1);
 
     for(i = 0; i < layer.batch; ++i){
         float * a = layer.delta_gpu;
         float * b = layer.col_image_gpu;
         float * c = layer.filter_updates_gpu;
 
-        im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
+        im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
         gemm_ongpu(0,1,m,n,k,alpha,a + i*m*k,k,b,k,1,c,n);
 
-        if(delta_gpu){
+        if(state.delta){
 
             float * a = layer.filters_gpu;
             float * b = layer.delta_gpu;
@@ -104,7 +104,7 @@
 
             gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
 
-            col2im_ongpu(layer.col_image_gpu, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_gpu + i*layer.c*layer.h*layer.w);
+            col2im_ongpu(layer.col_image_gpu, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, state.delta + i*layer.c*layer.h*layer.w);
         }
     }
 }
@@ -125,22 +125,15 @@
     cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
 }
 
-extern "C" void update_convolutional_layer_gpu(convolutional_layer layer)
+extern "C" void update_convolutional_layer_gpu(convolutional_layer layer, float learning_rate, float momentum, float decay)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
 
-/*
-    cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, size);
-    cuda_pull_array(layer.filters_gpu, layer.filters, size);
-    printf("Filter: %f updates: %f\n", mag_array(layer.filters, size), layer.learning_rate*mag_array(layer.filter_updates, size));
-    */
+    axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
+    scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
 
-    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
-    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1);
-
-    axpy_ongpu(size, -layer.decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
-    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
-    scal_ongpu(size, layer.momentum, layer.filter_updates_gpu, 1);
-    //pull_convolutional_layer(layer);
+    axpy_ongpu(size, -decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
+    axpy_ongpu(size, learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
+    scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
 }
 
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 7782e3d..ad0d1c1 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -41,15 +41,11 @@
     return float_to_image(h,w,c,layer.delta);
 }
 
-convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
+convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
 {
     int i;
     convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
 
-    layer->learning_rate = learning_rate;
-    layer->momentum = momentum;
-    layer->decay = decay;
-
     layer->h = h;
     layer->w = w;
     layer->c = c;
@@ -143,7 +139,7 @@
 }
 
 
-void forward_convolutional_layer(const convolutional_layer layer, float *in)
+void forward_convolutional_layer(const convolutional_layer layer, network_state state)
 {
     int out_h = convolutional_out_height(layer);
     int out_w = convolutional_out_width(layer);
@@ -160,16 +156,16 @@
     float *c = layer.output;
 
     for(i = 0; i < layer.batch; ++i){
-        im2col_cpu(in, layer.c, layer.h, layer.w, 
+        im2col_cpu(state.input, layer.c, layer.h, layer.w, 
             layer.size, layer.stride, layer.pad, b);
         gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
         c += n*m;
-        in += layer.c*layer.h*layer.w;
+        state.input += layer.c*layer.h*layer.w;
     }
     activate_array(layer.output, m*n*layer.batch, layer.activation);
 }
 
-void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta)
+void backward_convolutional_layer(convolutional_layer layer, network_state state)
 {
     float alpha = 1./layer.batch;
     int i;
@@ -181,40 +177,40 @@
     gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
     backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
 
-    if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
 
     for(i = 0; i < layer.batch; ++i){
         float *a = layer.delta + i*m*k;
         float *b = layer.col_image;
         float *c = layer.filter_updates;
 
-        float *im = in+i*layer.c*layer.h*layer.w;
+        float *im = state.input+i*layer.c*layer.h*layer.w;
 
         im2col_cpu(im, layer.c, layer.h, layer.w, 
                 layer.size, layer.stride, layer.pad, b);
         gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
 
-        if(delta){
+        if(state.delta){
             a = layer.filters;
             b = layer.delta + i*m*k;
             c = layer.col_image;
 
             gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
 
-            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w);
+            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w);
         }
     }
 }
 
-void update_convolutional_layer(convolutional_layer layer)
+void update_convolutional_layer(convolutional_layer layer, float learning_rate, float momentum, float decay)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
-    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
-    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
+    axpy_cpu(layer.n, learning_rate, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
 
-    axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
-    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
-    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
+    axpy_cpu(size, -decay, layer.filters, 1, layer.filter_updates, 1);
+    axpy_cpu(size, learning_rate, layer.filter_updates, 1, layer.filters, 1);
+    scal_cpu(size, momentum, layer.filter_updates, 1);
 }
 
 
diff --git a/src/convolutional_layer.h b/src/convolutional_layer.h
index 72f3f72..eaf1562 100644
--- a/src/convolutional_layer.h
+++ b/src/convolutional_layer.h
@@ -2,14 +2,11 @@
 #define CONVOLUTIONAL_LAYER_H
 
 #include "cuda.h"
+#include "params.h"
 #include "image.h"
 #include "activations.h"
 
 typedef struct {
-    float learning_rate;
-    float momentum;
-    float decay;
-
     int batch;
     int h,w,c;
     int n;
@@ -42,9 +39,9 @@
 } convolutional_layer;
 
 #ifdef GPU
-void forward_convolutional_layer_gpu(convolutional_layer layer, float * in);
-void backward_convolutional_layer_gpu(convolutional_layer layer, float * in, float * delta_gpu);
-void update_convolutional_layer_gpu(convolutional_layer layer);
+void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
+void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
+void update_convolutional_layer_gpu(convolutional_layer layer, float learning_rate, float momentum, float decay);
 
 void push_convolutional_layer(convolutional_layer layer);
 void pull_convolutional_layer(convolutional_layer layer);
@@ -53,13 +50,13 @@
 void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
 #endif
 
-convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay);
+convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
 void resize_convolutional_layer(convolutional_layer *layer, int h, int w);
-void forward_convolutional_layer(const convolutional_layer layer, float *in);
-void update_convolutional_layer(convolutional_layer layer);
+void forward_convolutional_layer(const convolutional_layer layer, network_state state);
+void update_convolutional_layer(convolutional_layer layer, float learning_rate, float momentum, float decay);
 image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters);
 
-void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta);
+void backward_convolutional_layer(convolutional_layer layer, network_state state);
 
 void bias_output(float *output, float *biases, int batch, int n, int size);
 void backward_bias(float *bias_updates, float *delta, int batch, int n, int size);
diff --git a/src/cost_layer.c b/src/cost_layer.c
index 8158275..d2c616f 100644
--- a/src/cost_layer.c
+++ b/src/cost_layer.c
@@ -47,48 +47,36 @@
     cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
 }
 
-void forward_cost_layer(cost_layer layer, float *input, float *truth)
+void forward_cost_layer(cost_layer layer, network_state state)
 {
-    if (!truth) return;
-    copy_cpu(layer.batch*layer.inputs, truth, 1, layer.delta, 1);
-    axpy_cpu(layer.batch*layer.inputs, -1, input, 1, layer.delta, 1);
+    if (!state.truth) return;
+    copy_cpu(layer.batch*layer.inputs, state.truth, 1, layer.delta, 1);
+    axpy_cpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta, 1);
     *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
     //printf("cost: %f\n", *layer.output);
 }
 
-void backward_cost_layer(const cost_layer layer, float *input, float *delta)
+void backward_cost_layer(const cost_layer layer, network_state state)
 {
-    copy_cpu(layer.batch*layer.inputs, layer.delta, 1, delta, 1);
+    copy_cpu(layer.batch*layer.inputs, layer.delta, 1, state.delta, 1);
 }
 
 #ifdef GPU
 
-void forward_cost_layer_gpu(cost_layer layer, float * input, float * truth)
+void forward_cost_layer_gpu(cost_layer layer, network_state state)
 {
-    if (!truth) return;
+    if (!state.truth) return;
     
-    /*
-    float *in = calloc(layer.inputs*layer.batch, sizeof(float));
-    float *t = calloc(layer.inputs*layer.batch, sizeof(float));
-    cuda_pull_array(input, in, layer.batch*layer.inputs);
-    cuda_pull_array(truth, t, layer.batch*layer.inputs);
-    forward_cost_layer(layer, in, t);
-    cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
-    free(in);
-    free(t);
-    */
-
-    copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_gpu, 1);
-    axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_gpu, 1);
+    copy_ongpu(layer.batch*layer.inputs, state.truth, 1, layer.delta_gpu, 1);
+    axpy_ongpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta_gpu, 1);
 
     cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
     *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
-    //printf("cost: %f\n", *layer.output);
 }
 
-void backward_cost_layer_gpu(const cost_layer layer, float * input, float * delta)
+void backward_cost_layer_gpu(const cost_layer layer, network_state state)
 {
-    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, delta, 1);
+    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, state.delta, 1);
 }
 #endif
 
diff --git a/src/cost_layer.h b/src/cost_layer.h
index 0855405..d441698 100644
--- a/src/cost_layer.h
+++ b/src/cost_layer.h
@@ -1,5 +1,6 @@
 #ifndef COST_LAYER_H
 #define COST_LAYER_H
+#include "params.h"
 
 typedef enum{
     SSE
@@ -21,12 +22,12 @@
 COST_TYPE get_cost_type(char *s);
 char *get_cost_string(COST_TYPE a);
 cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type);
-void forward_cost_layer(const cost_layer layer, float *input, float *truth);
-void backward_cost_layer(const cost_layer layer, float *input, float *delta);
+void forward_cost_layer(const cost_layer layer, network_state state);
+void backward_cost_layer(const cost_layer layer, network_state state);
 
 #ifdef GPU
-void forward_cost_layer_gpu(cost_layer layer, float * input, float * truth);
-void backward_cost_layer_gpu(const cost_layer layer, float * input, float * delta);
+void forward_cost_layer_gpu(cost_layer layer, network_state state);
+void backward_cost_layer_gpu(const cost_layer layer, network_state state);
 #endif
 
 #endif
diff --git a/src/crop_layer.c b/src/crop_layer.c
index 3f0011d..cf1383e 100644
--- a/src/crop_layer.c
+++ b/src/crop_layer.c
@@ -28,7 +28,7 @@
     return layer;
 }
 
-void forward_crop_layer(const crop_layer layer, int train, float *input)
+void forward_crop_layer(const crop_layer layer, network_state state)
 {
     int i,j,c,b,row,col;
     int index;
@@ -36,7 +36,7 @@
     int flip = (layer.flip && rand()%2);
     int dh = rand()%(layer.h - layer.crop_height + 1);
     int dw = rand()%(layer.w - layer.crop_width + 1);
-    if(!train){
+    if(!state.train){
         flip = 0;
         dh = (layer.h - layer.crop_height)/2;
         dw = (layer.w - layer.crop_width)/2;
@@ -52,7 +52,7 @@
                     }
                     row = i + dh;
                     index = col+layer.w*(row+layer.h*(c + layer.c*b)); 
-                    layer.output[count++] = input[index];
+                    layer.output[count++] = state.input[index];
                 }
             }
         }
diff --git a/src/crop_layer.h b/src/crop_layer.h
index 0d2f03b..05a511b 100644
--- a/src/crop_layer.h
+++ b/src/crop_layer.h
@@ -2,6 +2,7 @@
 #define CROP_LAYER_H
 
 #include "image.h"
+#include "params.h"
 
 typedef struct {
     int batch;
@@ -17,10 +18,10 @@
 
 image get_crop_image(crop_layer layer);
 crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip);
-void forward_crop_layer(const crop_layer layer, int train, float *input);
+void forward_crop_layer(const crop_layer layer, network_state state);
 
 #ifdef GPU
-void forward_crop_layer_gpu(crop_layer layer, int train, float *input);
+void forward_crop_layer_gpu(crop_layer layer, network_state state);
 #endif
 
 #endif
diff --git a/src/crop_layer_kernels.cu b/src/crop_layer_kernels.cu
index 628c700..8c97f35 100644
--- a/src/crop_layer_kernels.cu
+++ b/src/crop_layer_kernels.cu
@@ -24,12 +24,12 @@
     output[count] = input[index];
 }
 
-extern "C" void forward_crop_layer_gpu(crop_layer layer, int train, float *input)
+extern "C" void forward_crop_layer_gpu(crop_layer layer, network_state state)
 {
     int flip = (layer.flip && rand()%2);
     int dh = rand()%(layer.h - layer.crop_height + 1);
     int dw = rand()%(layer.w - layer.crop_width + 1);
-    if(!train){
+    if(!state.train){
         flip = 0;
         dh = (layer.h - layer.crop_height)/2;
         dw = (layer.w - layer.crop_width)/2;
@@ -39,7 +39,7 @@
     dim3 dimBlock(BLOCK, 1, 1);
     dim3 dimGrid((size-1)/BLOCK + 1, 1, 1);
 
-    forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(input, size, layer.c, layer.h, layer.w,
+    forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, size, layer.c, layer.h, layer.w,
                         layer.crop_height, layer.crop_width, dh, dw, flip, layer.output_gpu);
     check_error(cudaPeekAtLastError());
 }
diff --git a/src/data.c b/src/data.c
index a429476..342edfa 100644
--- a/src/data.c
+++ b/src/data.c
@@ -18,6 +18,7 @@
     int nw;
     int jitter;
     int classes;
+    int background;
     data *d;
 };
 
@@ -62,17 +63,62 @@
     return X;
 }
 
-void fill_truth_detection(char *path, float *truth, int classes, int height, int width, int num_height, int num_width, int dy, int dx, int jitter, int flip)
+typedef struct box{
+    int id;
+    float x,y,w,h;
+} box;
+
+box *read_boxes(char *filename, int *n)
+{
+    box *boxes = calloc(1, sizeof(box));
+    FILE *file = fopen(filename, "r");
+    if(!file) file_error(filename);
+    float x, y, h, w;
+    int id;
+    int count = 0;
+    while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
+        boxes = realloc(boxes, (count+1)*sizeof(box));
+        boxes[count].id = id;
+        boxes[count].x = x;
+        boxes[count].y = y;
+        boxes[count].h = h;
+        boxes[count].w = w;
+        ++count;
+    }
+    fclose(file);
+    *n = count;
+    return boxes;
+}
+
+void randomize_boxes(box *b, int n)
+{
+    int i;
+    for(i = 0; i < n; ++i){
+        box swap = b[i];
+        int index = rand()%n;
+        b[i] = b[index];
+        b[index] = swap;
+    }
+}
+
+void fill_truth_detection(char *path, float *truth, int classes, int height, int width, int num_height, int num_width, int dy, int dx, int jitter, int flip, int background)
 {
     int box_height = height/num_height;
     int box_width = width/num_width;
     char *labelpath = find_replace(path, "VOC2012/JPEGImages", "labels");
     labelpath = find_replace(labelpath, ".jpg", ".txt");
-    FILE *file = fopen(labelpath, "r");
-    if(!file) file_error(labelpath);
+    int count = 0;
+    box *boxes = read_boxes(labelpath, &count);
+    randomize_boxes(boxes, count);
     float x, y, h, w;
     int id;
-    while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
+    int i, j;
+    for(i = 0; i < count; ++i){
+        x = boxes[i].x;
+        y = boxes[i].y;
+        w = boxes[i].w;
+        h = boxes[i].h;
+        id = boxes[i].id;
         if(flip) x = 1-x;
         x *= width + jitter;
         y *= height + jitter;
@@ -88,23 +134,24 @@
         
         float dw = (x - i*box_width)/box_width;
         float dh = (y - j*box_height)/box_height;
-        //printf("%d %d %d %f %f\n", id, i, j, dh, dw);
-        int index = (i+j*num_width)*(4+classes);
-        if(truth[index+classes]) continue;
+
+        int index = (i+j*num_width)*(4+classes+background);
+        if(truth[index+classes+background]) continue;
         truth[index+id] = 1;
-        index += classes;
+        index += classes+background;
         truth[index++] = dh;
         truth[index++] = dw;
         truth[index++] = h*(height+jitter)/height;
         truth[index++] = w*(width+jitter)/width;
     }
-    int i, j;
-    for(i = 0; i < num_height*num_width*(4+classes); i += 4+classes){
-        int background = 1;
-        for(j = i; j < i+classes; ++j) if (truth[j]) background = 0;
-        truth[i+classes-1] = background;
+    free(boxes);
+    if(background){
+        for(i = 0; i < num_height*num_width*(4+classes+background); i += 4+classes+background){
+            int object = 0;
+            for(j = i; j < i+classes; ++j) if (truth[j]) object = 1;
+            truth[i+classes] = !object;
+        }
     }
-    fclose(file);
 }
 
 #define NUMCHARS 37
@@ -218,20 +265,20 @@
     }
 }
 
-data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter)
+data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background)
 {
     char **random_paths = get_random_paths(paths, n, m);
     int i;
     data d;
     d.shallow = 0;
     d.X = load_image_paths(random_paths, n, h, w);
-    int k = nh*nw*(4+classes);
+    int k = nh*nw*(4+classes+background);
     d.y = make_matrix(n, k);
     for(i = 0; i < n; ++i){
         int dx = rand()%jitter;
         int dy = rand()%jitter;
         int flip = rand()%2;
-        fill_truth_detection(random_paths[i], d.y.vals[i], classes, h-jitter, w-jitter, nh, nw, dy, dx, jitter, flip);
+        fill_truth_detection(random_paths[i], d.y.vals[i], classes, h-jitter, w-jitter, nh, nw, dy, dx, jitter, flip, background);
         image a = float_to_image(h, w, 3, d.X.vals[i]);
         if(flip) flip_image(a);
         jitter_image(a,h-jitter,w-jitter,dy,dx);
@@ -245,14 +292,14 @@
 {
     printf("Loading data: %d\n", rand());
     struct load_args a = *(struct load_args*)ptr;
-    *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.nh, a.nw, a.jitter);
+    *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.nh, a.nw, a.jitter, a.background);
     translate_data_rows(*a.d, -128);
     scale_data_rows(*a.d, 1./128);
     free(ptr);
     return 0;
 }
 
-pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, data *d)
+pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background, data *d)
 {
     pthread_t thread;
     struct load_args *args = calloc(1, sizeof(struct load_args));
@@ -265,6 +312,7 @@
     args->nw = nw;
     args->classes = classes;
     args->jitter = jitter;
+    args->background = background;
     args->d = d;
     if(pthread_create(&thread, 0, load_detection_thread, args)) {
         error("Thread creation failed");
diff --git a/src/data.h b/src/data.h
index 0cae7f5..ec18627 100644
--- a/src/data.h
+++ b/src/data.h
@@ -20,8 +20,8 @@
 data load_data(char **paths, int n, int m, char **labels, int k, int h, int w);
 pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d);
 
-pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, data *d);
-data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter);
+pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background, data *d);
+data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background);
 
 data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w);
 data load_cifar10_data(char *filename);
diff --git a/src/deconvolutional_kernels.cu b/src/deconvolutional_kernels.cu
index 1d05a80..aeab2c3 100644
--- a/src/deconvolutional_kernels.cu
+++ b/src/deconvolutional_kernels.cu
@@ -9,7 +9,7 @@
 #include "cuda.h"
 }
 
-extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in)
+extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
 {
     int i;
     int out_h = deconvolutional_out_height(layer);
@@ -24,7 +24,7 @@
 
     for(i = 0; i < layer.batch; ++i){
         float *a = layer.filters_gpu;
-        float *b = in + i*layer.c*layer.h*layer.w;
+        float *b = state.input + i*layer.c*layer.h*layer.w;
         float *c = layer.col_image_gpu;
 
         gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
@@ -34,7 +34,7 @@
     activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
 }
 
-extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in, float *delta_gpu)
+extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
 {
     float alpha = 1./layer.batch;
     int out_h = deconvolutional_out_height(layer);
@@ -45,14 +45,14 @@
     gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu);
     backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size);
 
-    if(delta_gpu) memset(delta_gpu, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
 
     for(i = 0; i < layer.batch; ++i){
         int m = layer.c;
         int n = layer.size*layer.size*layer.n;
         int k = layer.h*layer.w;
 
-        float *a = in + i*m*n;
+        float *a = state.input + i*m*n;
         float *b = layer.col_image_gpu;
         float *c = layer.filter_updates_gpu;
 
@@ -60,14 +60,14 @@
                 layer.size, layer.stride, 0, b);
         gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
 
-        if(delta_gpu){
+        if(state.delta){
             int m = layer.c;
             int n = layer.h*layer.w;
             int k = layer.size*layer.size*layer.n;
 
             float *a = layer.filters_gpu;
             float *b = layer.col_image_gpu;
-            float *c = delta_gpu + i*n*m;
+            float *c = state.delta + i*n*m;
 
             gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
         }
@@ -90,15 +90,15 @@
     cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
 }
 
-extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer)
+extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, float learning_rate, float momentum, float decay)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
 
-    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
-    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1);
+    axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
+    scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
 
-    axpy_ongpu(size, -layer.decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
-    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
-    scal_ongpu(size, layer.momentum, layer.filter_updates_gpu, 1);
+    axpy_ongpu(size, -decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
+    axpy_ongpu(size, learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
+    scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
 }
 
diff --git a/src/deconvolutional_layer.c b/src/deconvolutional_layer.c
index d4a8426..83147b5 100644
--- a/src/deconvolutional_layer.c
+++ b/src/deconvolutional_layer.c
@@ -43,15 +43,11 @@
     return float_to_image(h,w,c,layer.delta);
 }
 
-deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay)
+deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
 {
     int i;
     deconvolutional_layer *layer = calloc(1, sizeof(deconvolutional_layer));
 
-    layer->learning_rate = learning_rate;
-    layer->momentum = momentum;
-    layer->decay = decay;
-
     layer->h = h;
     layer->w = w;
     layer->c = c;
@@ -120,7 +116,7 @@
     #endif
 }
 
-void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in)
+void forward_deconvolutional_layer(const deconvolutional_layer layer, network_state state)
 {
     int i;
     int out_h = deconvolutional_out_height(layer);
@@ -135,7 +131,7 @@
 
     for(i = 0; i < layer.batch; ++i){
         float *a = layer.filters;
-        float *b = in + i*layer.c*layer.h*layer.w;
+        float *b = state.input + i*layer.c*layer.h*layer.w;
         float *c = layer.col_image;
 
         gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
@@ -145,7 +141,7 @@
     activate_array(layer.output, layer.batch*layer.n*size, layer.activation);
 }
 
-void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta)
+void backward_deconvolutional_layer(deconvolutional_layer layer, network_state state)
 {
     float alpha = 1./layer.batch;
     int out_h = deconvolutional_out_height(layer);
@@ -156,14 +152,14 @@
     gradient_array(layer.output, size*layer.n*layer.batch, layer.activation, layer.delta);
     backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, size);
 
-    if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+    if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
 
     for(i = 0; i < layer.batch; ++i){
         int m = layer.c;
         int n = layer.size*layer.size*layer.n;
         int k = layer.h*layer.w;
 
-        float *a = in + i*m*n;
+        float *a = state.input + i*m*n;
         float *b = layer.col_image;
         float *c = layer.filter_updates;
 
@@ -171,29 +167,29 @@
                 layer.size, layer.stride, 0, b);
         gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
 
-        if(delta){
+        if(state.delta){
             int m = layer.c;
             int n = layer.h*layer.w;
             int k = layer.size*layer.size*layer.n;
 
             float *a = layer.filters;
             float *b = layer.col_image;
-            float *c = delta + i*n*m;
+            float *c = state.delta + i*n*m;
 
             gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
         }
     }
 }
 
-void update_deconvolutional_layer(deconvolutional_layer layer)
+void update_deconvolutional_layer(deconvolutional_layer layer, float learning_rate, float momentum, float decay)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
-    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
-    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
+    axpy_cpu(layer.n, learning_rate, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.n, momentum, layer.bias_updates, 1);
 
-    axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
-    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
-    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
+    axpy_cpu(size, -decay, layer.filters, 1, layer.filter_updates, 1);
+    axpy_cpu(size, learning_rate, layer.filter_updates, 1, layer.filters, 1);
+    scal_cpu(size, momentum, layer.filter_updates, 1);
 }
 
 
diff --git a/src/deconvolutional_layer.h b/src/deconvolutional_layer.h
index 1da43dc..0ece76f 100644
--- a/src/deconvolutional_layer.h
+++ b/src/deconvolutional_layer.h
@@ -2,14 +2,11 @@
 #define DECONVOLUTIONAL_LAYER_H
 
 #include "cuda.h"
+#include "params.h"
 #include "image.h"
 #include "activations.h"
 
 typedef struct {
-    float learning_rate;
-    float momentum;
-    float decay;
-
     int batch;
     int h,w,c;
     int n;
@@ -41,18 +38,18 @@
 } deconvolutional_layer;
 
 #ifdef GPU
-void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, float * in);
-void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, float * in, float * delta_gpu);
-void update_deconvolutional_layer_gpu(deconvolutional_layer layer);
+void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state);
+void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state);
+void update_deconvolutional_layer_gpu(deconvolutional_layer layer, float learning_rate, float momentum, float decay);
 void push_deconvolutional_layer(deconvolutional_layer layer);
 void pull_deconvolutional_layer(deconvolutional_layer layer);
 #endif
 
-deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay);
+deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
 void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w);
-void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in);
-void update_deconvolutional_layer(deconvolutional_layer layer);
-void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta);
+void forward_deconvolutional_layer(const deconvolutional_layer layer, network_state state);
+void update_deconvolutional_layer(deconvolutional_layer layer, float learning_rate, float momentum, float decay);
+void backward_deconvolutional_layer(deconvolutional_layer layer, network_state state);
 
 image get_deconvolutional_image(deconvolutional_layer layer);
 image get_deconvolutional_delta(deconvolutional_layer layer);
diff --git a/src/detection.c b/src/detection.c
index fa8b38c..f861347 100644
--- a/src/detection.c
+++ b/src/detection.c
@@ -61,15 +61,16 @@
     data train, buffer;
     int im_dim = 512;
     int jitter = 64;
-    int classes = 21;
-    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
+    int classes = 20;
+    int background = 1;
+    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
     clock_t time;
     while(1){
         i += 1;
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
+        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
 
         /*
            image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
@@ -103,10 +104,12 @@
     srand(time(0));
 
     list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
+    //list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
     char **paths = (char **)list_to_array(plist);
-    int num_output = 1225;
     int im_size = 448;
-    int classes = 21;
+    int classes = 20;
+    int background = 0;
+    int num_output = 7*7*(4+classes+background);
 
     int m = plist->size;
     int i = 0;
@@ -130,26 +133,18 @@
         matrix pred = network_predict_data(net, val);
         int j, k, class;
         for(j = 0; j < pred.rows; ++j){
-            for(k = 0; k < pred.cols; k += classes+4){
-
-                /*
-                   int z;
-                   for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
-                   printf("\n");
-                 */
-
-                //if (pred.vals[j][k] > .001){
-                for(class = 0; class < classes-1; ++class){
-                    int index = (k)/(classes+4); 
+            for(k = 0; k < pred.cols; k += classes+4+background){
+                for(class = 0; class < classes; ++class){
+                    int index = (k)/(classes+4+background); 
                     int r = index/7;
                     int c = index%7;
-                    float y = (r + pred.vals[j][k+0+classes])/7.;
-                    float x = (c + pred.vals[j][k+1+classes])/7.;
-                    float h = pred.vals[j][k+2+classes];
-                    float w = pred.vals[j][k+3+classes];
+                    int ci = k+classes+background;
+                    float y = (r + pred.vals[j][ci + 0])/7.;
+                    float x = (c + pred.vals[j][ci + 1])/7.;
+                    float h = pred.vals[j][ci + 2];
+                    float w = pred.vals[j][ci + 3];
                     printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
                 }
-                //}
             }
         }
 
diff --git a/src/detection_layer.c b/src/detection_layer.c
index 68d151a..5ca7fa2 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -39,28 +39,52 @@
     return layer;
 }
 
-void forward_detection_layer(const detection_layer layer, float *in, float *truth)
+
+void forward_detection_layer(const detection_layer layer, network_state state)
 {
     int in_i = 0;
     int out_i = 0;
     int locations = get_detection_layer_locations(layer);
     int i,j;
     for(i = 0; i < layer.batch*locations; ++i){
-        int mask = (!truth || !truth[out_i + layer.classes - 1]);
+        int mask = (!state.truth || state.truth[out_i + layer.classes + 2]);
         float scale = 1;
-        if(layer.rescore) scale = in[in_i++];
+        if(layer.rescore) scale = state.input[in_i++];
         for(j = 0; j < layer.classes; ++j){
-            layer.output[out_i++] = scale*in[in_i++];
+            layer.output[out_i++] = scale*state.input[in_i++];
         }
-        softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes);
-        activate_array(in+in_i, layer.coords, LOGISTIC);
+        if(!layer.rescore){
+            softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes);
+            activate_array(state.input+in_i, layer.coords, LOGISTIC);
+        }
         for(j = 0; j < layer.coords; ++j){
-            layer.output[out_i++] = mask*in[in_i++];
+            layer.output[out_i++] = mask*state.input[in_i++];
         }
     }
 }
 
-void backward_detection_layer(const detection_layer layer, float *in, float *delta)
+void dark_zone(detection_layer layer, int index, network_state state)
+{
+    int size = layer.classes+layer.rescore+layer.coords;
+    int location = (index%(7*7*size)) / size ;
+    int r = location / 7;
+    int c = location % 7;
+    int class = index%size;
+    if(layer.rescore) --class;
+    int dr, dc;
+    for(dr = -1; dr <= 1; ++dr){
+        for(dc = -1; dc <= 1; ++dc){
+            if(!(dr || dc)) continue;
+            if((r + dr) > 6 || (r + dr) < 0) continue;
+            if((c + dc) > 6 || (c + dc) < 0) continue;
+            int di = (dr*7 + dc) * size;
+            if(state.truth[index+di]) continue;
+            layer.delta[index + di] = 0;
+        }
+    }
+}
+
+void backward_detection_layer(const detection_layer layer, network_state state)
 {
     int locations = get_detection_layer_locations(layer);
     int i,j;
@@ -69,49 +93,68 @@
     for(i = 0; i < layer.batch*locations; ++i){
         float scale = 1;
         float latent_delta = 0;
-        if(layer.rescore) scale = in[in_i++];
+        if(layer.rescore) scale = state.input[in_i++];
+        if(!layer.rescore){
+            for(j = 0; j < layer.classes-1; ++j){
+                if(state.truth[out_i + j]) dark_zone(layer, out_i+j, state);
+            }
+        }
         for(j = 0; j < layer.classes; ++j){
-            latent_delta += in[in_i]*layer.delta[out_i];
-            delta[in_i++] = scale*layer.delta[out_i++];
+            latent_delta += state.input[in_i]*layer.delta[out_i];
+            state.delta[in_i++] = scale*layer.delta[out_i++];
         }
-        
-        gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
+
+        if (!layer.rescore) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
         for(j = 0; j < layer.coords; ++j){
-            delta[in_i++] = layer.delta[out_i++];
+            state.delta[in_i++] = layer.delta[out_i++];
         }
-        if(layer.rescore) delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta;
+        if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta;
     }
 }
 
 #ifdef GPU
 
-void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth)
+void forward_detection_layer_gpu(const detection_layer layer, network_state state)
 {
     int outputs = get_detection_layer_output_size(layer);
     float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
     float *truth_cpu = 0;
-    if(truth){
+    if(state.truth){
         truth_cpu = calloc(layer.batch*outputs, sizeof(float));
-        cuda_pull_array(truth, truth_cpu, layer.batch*outputs);
+        cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
     }
-    cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
-    forward_detection_layer(layer, in_cpu, truth_cpu);
+    cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
+    network_state cpu_state;
+    cpu_state.train = state.train;
+    cpu_state.truth = truth_cpu;
+    cpu_state.input = in_cpu;
+    forward_detection_layer(layer, cpu_state);
     cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
-    free(in_cpu);
-    if(truth_cpu) free(truth_cpu);
+    free(cpu_state.input);
+    if(cpu_state.truth) free(cpu_state.truth);
 }
 
-void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta)
+void backward_detection_layer_gpu(detection_layer layer, network_state state)
 {
     int outputs = get_detection_layer_output_size(layer);
 
     float *in_cpu =    calloc(layer.batch*layer.inputs, sizeof(float));
     float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
+    float *truth_cpu = 0;
+    if(state.truth){
+        truth_cpu = calloc(layer.batch*outputs, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
+    }
+    network_state cpu_state;
+    cpu_state.train = state.train;
+    cpu_state.input = in_cpu;
+    cpu_state.truth = truth_cpu;
+    cpu_state.delta = delta_cpu;
 
-    cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
+    cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
     cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
-    backward_detection_layer(layer, in_cpu, delta_cpu);
-    cuda_push_array(delta, delta_cpu, layer.batch*layer.inputs);
+    backward_detection_layer(layer, cpu_state);
+    cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
 
     free(in_cpu);
     free(delta_cpu);
diff --git a/src/detection_layer.h b/src/detection_layer.h
index e7e9e20..69a83a7 100644
--- a/src/detection_layer.h
+++ b/src/detection_layer.h
@@ -1,6 +1,8 @@
 #ifndef DETECTION_LAYER_H
 #define DETECTION_LAYER_H
 
+#include "params.h"
+
 typedef struct {
     int batch;
     int inputs;
@@ -16,13 +18,13 @@
 } detection_layer;
 
 detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore);
-void forward_detection_layer(const detection_layer layer, float *in, float *truth);
-void backward_detection_layer(const detection_layer layer, float *in, float *delta);
+void forward_detection_layer(const detection_layer layer, network_state state);
+void backward_detection_layer(const detection_layer layer, network_state state);
 int get_detection_layer_output_size(detection_layer layer);
 
 #ifdef GPU
-void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth);
-void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta);
+void forward_detection_layer_gpu(const detection_layer layer, network_state state);
+void backward_detection_layer_gpu(detection_layer layer, network_state state);
 #endif
 
 #endif
diff --git a/src/dropout_layer.c b/src/dropout_layer.c
index 32a3408..7fbf8ff 100644
--- a/src/dropout_layer.c
+++ b/src/dropout_layer.c
@@ -1,4 +1,5 @@
 #include "dropout_layer.h"
+#include "params.h"
 #include "utils.h"
 #include "cuda.h"
 #include <stdlib.h>
@@ -11,11 +12,9 @@
     layer->probability = probability;
     layer->inputs = inputs;
     layer->batch = batch;
-    layer->output = calloc(inputs*batch, sizeof(float));
     layer->rand = calloc(inputs*batch, sizeof(float));
     layer->scale = 1./(1.-probability);
     #ifdef GPU
-    layer->output_gpu = cuda_make_array(layer->output, inputs*batch);
     layer->rand_gpu = cuda_make_array(layer->rand, inputs*batch);
     #endif
     return layer;
@@ -23,36 +22,34 @@
 
 void resize_dropout_layer(dropout_layer *layer, int inputs)
 {
-    layer->output = realloc(layer->output, layer->inputs*layer->batch*sizeof(float));
     layer->rand = realloc(layer->rand, layer->inputs*layer->batch*sizeof(float));
     #ifdef GPU
-    cuda_free(layer->output_gpu);
     cuda_free(layer->rand_gpu);
 
-    layer->output_gpu = cuda_make_array(layer->output, inputs*layer->batch);
     layer->rand_gpu = cuda_make_array(layer->rand, inputs*layer->batch);
     #endif
 }
 
-void forward_dropout_layer(dropout_layer layer, float *input)
+void forward_dropout_layer(dropout_layer layer, network_state state)
 {
     int i;
+    if (!state.train) return;
     for(i = 0; i < layer.batch * layer.inputs; ++i){
         float r = rand_uniform();
         layer.rand[i] = r;
-        if(r < layer.probability) layer.output[i] = 0;
-        else layer.output[i] = input[i]*layer.scale;
+        if(r < layer.probability) state.input[i] = 0;
+        else state.input[i] *= layer.scale;
     }
 }
 
-void backward_dropout_layer(dropout_layer layer, float *delta)
+void backward_dropout_layer(dropout_layer layer, network_state state)
 {
     int i;
-    if(!delta) return;
+    if(!state.delta) return;
     for(i = 0; i < layer.batch * layer.inputs; ++i){
         float r = layer.rand[i];
-        if(r < layer.probability) delta[i] = 0;
-        else delta[i] *= layer.scale;
+        if(r < layer.probability) state.delta[i] = 0;
+        else state.delta[i] *= layer.scale;
     }
 }
 
diff --git a/src/dropout_layer.h b/src/dropout_layer.h
index 051ce47..d12d4a1 100644
--- a/src/dropout_layer.h
+++ b/src/dropout_layer.h
@@ -1,5 +1,6 @@
 #ifndef DROPOUT_LAYER_H
 #define DROPOUT_LAYER_H
+#include "params.h"
 
 typedef struct{
     int batch;
@@ -7,22 +8,20 @@
     float probability;
     float scale;
     float *rand;
-    float *output;
     #ifdef GPU
     float * rand_gpu;
-    float * output_gpu;
     #endif
 } dropout_layer;
 
 dropout_layer *make_dropout_layer(int batch, int inputs, float probability);
 
-void forward_dropout_layer(dropout_layer layer, float *input);
-void backward_dropout_layer(dropout_layer layer, float *delta);
+void forward_dropout_layer(dropout_layer layer, network_state state);
+void backward_dropout_layer(dropout_layer layer, network_state state);
 void resize_dropout_layer(dropout_layer *layer, int inputs);
 
 #ifdef GPU
-void forward_dropout_layer_gpu(dropout_layer layer, float * input);
-void backward_dropout_layer_gpu(dropout_layer layer, float * delta);
+void forward_dropout_layer_gpu(dropout_layer layer, network_state state);
+void backward_dropout_layer_gpu(dropout_layer layer, network_state state);
 
 #endif
 #endif
diff --git a/src/dropout_layer_kernels.cu b/src/dropout_layer_kernels.cu
index 371f0dc..94f61ab 100644
--- a/src/dropout_layer_kernels.cu
+++ b/src/dropout_layer_kernels.cu
@@ -2,32 +2,32 @@
 #include "dropout_layer.h"
 #include "cuda.h"
 #include "utils.h"
+#include "params.h"
 }
 
-__global__ void yoloswag420blazeit360noscope(float *input, int size, float *rand, float prob, float scale, float *output)
+__global__ void yoloswag420blazeit360noscope(float *input, int size, float *rand, float prob, float scale)
 {
     int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    if(id < size) output[id] = (rand[id] < prob) ? 0 : input[id]*scale;
+    if(id < size) input[id] = (rand[id] < prob) ? 0 : input[id]*scale;
 }
 
-extern "C" void forward_dropout_layer_gpu(dropout_layer layer, float * input)
+extern "C" void forward_dropout_layer_gpu(dropout_layer layer, network_state state)
 {
+    if (!state.train) return;
     int j;
     int size = layer.inputs*layer.batch;
     for(j = 0; j < size; ++j) layer.rand[j] = rand_uniform();
     cuda_push_array(layer.rand_gpu, layer.rand, layer.inputs*layer.batch);
 
-    yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(input, size, layer.rand_gpu, layer.probability,
-            layer.scale, layer.output_gpu);
+    yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(state.input, size, layer.rand_gpu, layer.probability, layer.scale);
     check_error(cudaPeekAtLastError());
 }
 
-extern "C" void backward_dropout_layer_gpu(dropout_layer layer, float *delta)
+extern "C" void backward_dropout_layer_gpu(dropout_layer layer, network_state state)
 {
-    if(!delta) return;
+    if(!state.delta) return;
     int size = layer.inputs*layer.batch;
 
-    yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(delta, size, layer.rand_gpu, layer.probability,
-            layer.scale, delta);
+    yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(state.delta, size, layer.rand_gpu, layer.probability, layer.scale);
     check_error(cudaPeekAtLastError());
 }
diff --git a/src/freeweight_layer.c b/src/freeweight_layer.c
deleted file mode 100644
index b4c02db..0000000
--- a/src/freeweight_layer.c
+++ /dev/null
@@ -1,25 +0,0 @@
-#include "freeweight_layer.h"
-#include "stdlib.h"
-#include "stdio.h"
-
-freeweight_layer *make_freeweight_layer(int batch, int inputs)
-{
-    fprintf(stderr, "Freeweight Layer: %d inputs\n", inputs);
-    freeweight_layer *layer = calloc(1, sizeof(freeweight_layer));
-    layer->inputs = inputs;
-    layer->batch = batch;
-    return layer;
-} 
-
-void forward_freeweight_layer(freeweight_layer layer, float *input)
-{
-    int i;
-    for(i = 0; i < layer.batch * layer.inputs; ++i){
-        input[i] *= 2.*((float)rand()/RAND_MAX);
-    }
-}
-
-void backward_freeweight_layer(freeweight_layer layer, float *input, float *delta)
-{
-    // Don't do shit LULZ
-}
diff --git a/src/freeweight_layer.h b/src/freeweight_layer.h
deleted file mode 100644
index bfca2c1..0000000
--- a/src/freeweight_layer.h
+++ /dev/null
@@ -1,14 +0,0 @@
-#ifndef FREEWEIGHT_LAYER_H
-#define FREEWEIGHT_LAYER_H
-
-typedef struct{
-    int batch;
-    int inputs;
-} freeweight_layer;
-
-freeweight_layer *make_freeweight_layer(int batch, int inputs);
-
-void forward_freeweight_layer(freeweight_layer layer, float *input);
-void backward_freeweight_layer(freeweight_layer layer, float *input, float *delta);
-
-#endif
diff --git a/src/maxpool_layer.c b/src/maxpool_layer.c
index ef7176d..790cb28 100644
--- a/src/maxpool_layer.c
+++ b/src/maxpool_layer.c
@@ -58,7 +58,7 @@
     #endif
 }
 
-void forward_maxpool_layer(const maxpool_layer layer, float *input)
+void forward_maxpool_layer(const maxpool_layer layer, network_state state)
 {
     int b,i,j,k,l,m;
     int w_offset = (-layer.size-1)/2 + 1;
@@ -82,7 +82,7 @@
                             int index = cur_w + layer.w*(cur_h + layer.h*(k + b*layer.c));
                             int valid = (cur_h >= 0 && cur_h < layer.h &&
                                          cur_w >= 0 && cur_w < layer.w);
-                            float val = (valid != 0) ? input[index] : -FLT_MAX;
+                            float val = (valid != 0) ? state.input[index] : -FLT_MAX;
                             max_i = (val > max) ? index : max_i;
                             max   = (val > max) ? val   : max;
                         }
@@ -95,16 +95,16 @@
     }
 }
 
-void backward_maxpool_layer(const maxpool_layer layer, float *delta)
+void backward_maxpool_layer(const maxpool_layer layer, network_state state)
 {
     int i;
     int h = (layer.h-1)/layer.stride + 1;
     int w = (layer.w-1)/layer.stride + 1;
     int c = layer.c;
-    memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+    memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
     for(i = 0; i < h*w*c*layer.batch; ++i){
         int index = layer.indexes[i];
-        delta[index] += layer.delta[i];
+        state.delta[index] += layer.delta[i];
     }
 }
 
diff --git a/src/maxpool_layer.h b/src/maxpool_layer.h
index 89fb245..cbd6a76 100644
--- a/src/maxpool_layer.h
+++ b/src/maxpool_layer.h
@@ -2,6 +2,7 @@
 #define MAXPOOL_LAYER_H
 
 #include "image.h"
+#include "params.h"
 #include "cuda.h"
 
 typedef struct {
@@ -22,12 +23,12 @@
 image get_maxpool_image(maxpool_layer layer);
 maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
 void resize_maxpool_layer(maxpool_layer *layer, int h, int w);
-void forward_maxpool_layer(const maxpool_layer layer, float *input);
-void backward_maxpool_layer(const maxpool_layer layer, float *delta);
+void forward_maxpool_layer(const maxpool_layer layer, network_state state);
+void backward_maxpool_layer(const maxpool_layer layer, network_state state);
 
 #ifdef GPU
-void forward_maxpool_layer_gpu(maxpool_layer layer, float * input);
-void backward_maxpool_layer_gpu(maxpool_layer layer, float * delta);
+void forward_maxpool_layer_gpu(maxpool_layer layer, network_state state);
+void backward_maxpool_layer_gpu(maxpool_layer layer, network_state state);
 #endif
 
 #endif
diff --git a/src/maxpool_layer_kernels.cu b/src/maxpool_layer_kernels.cu
index a5c8209..6c633a9 100644
--- a/src/maxpool_layer_kernels.cu
+++ b/src/maxpool_layer_kernels.cu
@@ -80,7 +80,7 @@
     prev_delta[index] = d;
 }
 
-extern "C" void forward_maxpool_layer_gpu(maxpool_layer layer, float *input)
+extern "C" void forward_maxpool_layer_gpu(maxpool_layer layer, network_state state)
 {
     int h = (layer.h-1)/layer.stride + 1;
     int w = (layer.w-1)/layer.stride + 1;
@@ -88,15 +88,15 @@
 
     size_t n = h*w*c*layer.batch;
 
-    forward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, input, layer.output_gpu, layer.indexes_gpu);
+    forward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, state.input, layer.output_gpu, layer.indexes_gpu);
     check_error(cudaPeekAtLastError());
 }
 
-extern "C" void backward_maxpool_layer_gpu(maxpool_layer layer, float * delta)
+extern "C" void backward_maxpool_layer_gpu(maxpool_layer layer, network_state state)
 {
     size_t n = layer.h*layer.w*layer.c*layer.batch;
 
-    backward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, layer.delta_gpu, delta, layer.indexes_gpu);
+    backward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, layer.delta_gpu, state.delta, layer.indexes_gpu);
     check_error(cudaPeekAtLastError());
 }
 
diff --git a/src/network.c b/src/network.c
index b60f059..89c5621 100644
--- a/src/network.c
+++ b/src/network.c
@@ -4,6 +4,7 @@
 #include "image.h"
 #include "data.h"
 #include "utils.h"
+#include "params.h"
 
 #include "crop_layer.h"
 #include "connected_layer.h"
@@ -13,7 +14,6 @@
 #include "maxpool_layer.h"
 #include "cost_layer.h"
 #include "normalization_layer.h"
-#include "freeweight_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 
@@ -36,8 +36,6 @@
             return "normalization";
         case DROPOUT:
             return "dropout";
-        case FREEWEIGHT:
-            return "freeweight";
         case CROP:
             return "crop";
         case COST:
@@ -48,16 +46,18 @@
     return "none";
 }
 
-network make_network(int n, int batch)
+network make_network(int n)
 {
     network net;
     net.n = n;
-    net.batch = batch;
     net.layers = calloc(net.n, sizeof(void *));
     net.types = calloc(net.n, sizeof(LAYER_TYPE));
     net.outputs = 0;
     net.output = 0;
     net.seen = 0;
+    net.batch = 0;
+    net.inputs = 0;
+    net.h = net.w = net.c = 0;
     #ifdef GPU
     net.input_gpu = calloc(1, sizeof(float *));
     net.truth_gpu = calloc(1, sizeof(float *));
@@ -65,68 +65,41 @@
     return net;
 }
 
-void forward_network(network net, float *input, float *truth, int train)
+void forward_network(network net, network_state state)
 {
     int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer(layer, input);
-            input = layer.output;
+            forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state);
         }
         else if(net.types[i] == DECONVOLUTIONAL){
-            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-            forward_deconvolutional_layer(layer, input);
-            input = layer.output;
+            forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state);
         }
         else if(net.types[i] == DETECTION){
-            detection_layer layer = *(detection_layer *)net.layers[i];
-            forward_detection_layer(layer, input, truth);
-            input = layer.output;
+            forward_detection_layer(*(detection_layer *)net.layers[i], state);
         }
         else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input);
-            input = layer.output;
+            forward_connected_layer(*(connected_layer *)net.layers[i], state);
         }
         else if(net.types[i] == CROP){
-            crop_layer layer = *(crop_layer *)net.layers[i];
-            forward_crop_layer(layer, train, input);
-            input = layer.output;
+            forward_crop_layer(*(crop_layer *)net.layers[i], state);
         }
         else if(net.types[i] == COST){
-            cost_layer layer = *(cost_layer *)net.layers[i];
-            forward_cost_layer(layer, input, truth);
+            forward_cost_layer(*(cost_layer *)net.layers[i], state);
         }
         else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer(layer, input);
-            input = layer.output;
+            forward_softmax_layer(*(softmax_layer *)net.layers[i], state);
         }
         else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer(layer, input);
-            input = layer.output;
+            forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state);
         }
         else if(net.types[i] == NORMALIZATION){
-            normalization_layer layer = *(normalization_layer *)net.layers[i];
-            forward_normalization_layer(layer, input);
-            input = layer.output;
+            forward_normalization_layer(*(normalization_layer *)net.layers[i], state);
         }
         else if(net.types[i] == DROPOUT){
-            if(!train) continue;
-            dropout_layer layer = *(dropout_layer *)net.layers[i];
-            forward_dropout_layer(layer, input);
-            input = layer.output;
+            forward_dropout_layer(*(dropout_layer *)net.layers[i], state);
         }
-        else if(net.types[i] == FREEWEIGHT){
-            if(!train) continue;
-            //freeweight_layer layer = *(freeweight_layer *)net.layers[i];
-            //forward_freeweight_layer(layer, input);
-        }
-        //char buff[256];
-        //sprintf(buff, "layer %d", i);
-        //cuda_compare(get_network_output_gpu_layer(net, i), input, get_network_output_size_layer(net, i)*net.batch, buff);
+        state.input = get_network_output_layer(net, i);
     }
 }
 
@@ -136,15 +109,15 @@
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer(layer);
+            update_convolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
         }
         else if(net.types[i] == DECONVOLUTIONAL){
             deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-            update_deconvolutional_layer(layer);
+            update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer);
+            update_connected_layer(layer, net.learning_rate, net.momentum, net.decay);
         }
     }
 }
@@ -152,37 +125,27 @@
 float *get_network_output_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output;
+        return ((convolutional_layer *)net.layers[i]) -> output;
     } else if(net.types[i] == DECONVOLUTIONAL){
-        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-        return layer.output;
+        return ((deconvolutional_layer *)net.layers[i]) -> output;
     } else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output;
+        return ((maxpool_layer *)net.layers[i]) -> output;
     } else if(net.types[i] == DETECTION){
-        detection_layer layer = *(detection_layer *)net.layers[i];
-        return layer.output;
+        return ((detection_layer *)net.layers[i]) -> output;
     } else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.output;
+        return ((softmax_layer *)net.layers[i]) -> output;
     } else if(net.types[i] == DROPOUT){
-        dropout_layer layer = *(dropout_layer *)net.layers[i];
-        return layer.output;
-    } else if(net.types[i] == FREEWEIGHT){
         return get_network_output_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.output;
+        return ((connected_layer *)net.layers[i]) -> output;
     } else if(net.types[i] == CROP){
-        crop_layer layer = *(crop_layer *)net.layers[i];
-        return layer.output;
+        return ((crop_layer *)net.layers[i]) -> output;
     } else if(net.types[i] == NORMALIZATION){
-        normalization_layer layer = *(normalization_layer *)net.layers[i];
-        return layer.output;
+        return ((normalization_layer *)net.layers[i]) -> output;
     }
     return 0;
 }
+
 float *get_network_output(network net)
 {
     int i;
@@ -210,8 +173,6 @@
     } else if(net.types[i] == DROPOUT){
         if(i == 0) return 0;
         return get_network_delta_layer(net, i-1);
-    } else if(net.types[i] == FREEWEIGHT){
-        return get_network_delta_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta;
@@ -257,54 +218,53 @@
     return max_index(out, k);
 }
 
-void backward_network(network net, float *input, float *truth)
+void backward_network(network net, network_state state)
 {
     int i;
-    float *prev_input;
-    float *prev_delta;
+    float *original_input = state.input;
     for(i = net.n-1; i >= 0; --i){
         if(i == 0){
-            prev_input = input;
-            prev_delta = 0;
+            state.input = original_input;
+            state.delta = 0;
         }else{
-            prev_input = get_network_output_layer(net, i-1);
-            prev_delta = get_network_delta_layer(net, i-1);
+            state.input = get_network_output_layer(net, i-1);
+            state.delta = get_network_delta_layer(net, i-1);
         }
 
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            backward_convolutional_layer(layer, prev_input, prev_delta);
+            backward_convolutional_layer(layer, state);
         } else if(net.types[i] == DECONVOLUTIONAL){
             deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-            backward_deconvolutional_layer(layer, prev_input, prev_delta);
+            backward_deconvolutional_layer(layer, state);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            if(i != 0) backward_maxpool_layer(layer, prev_delta);
+            if(i != 0) backward_maxpool_layer(layer, state);
         }
         else if(net.types[i] == DROPOUT){
             dropout_layer layer = *(dropout_layer *)net.layers[i];
-            backward_dropout_layer(layer, prev_delta);
+            backward_dropout_layer(layer, state);
         }
         else if(net.types[i] == DETECTION){
             detection_layer layer = *(detection_layer *)net.layers[i];
-            backward_detection_layer(layer, prev_input, prev_delta);
+            backward_detection_layer(layer, state);
         }
         else if(net.types[i] == NORMALIZATION){
             normalization_layer layer = *(normalization_layer *)net.layers[i];
-            if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_normalization_layer(layer, state);
         }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
-            if(i != 0) backward_softmax_layer(layer, prev_delta);
+            if(i != 0) backward_softmax_layer(layer, state);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            backward_connected_layer(layer, prev_input, prev_delta);
+            backward_connected_layer(layer, state);
         }
         else if(net.types[i] == COST){
             cost_layer layer = *(cost_layer *)net.layers[i];
-            backward_cost_layer(layer, prev_input, prev_delta);
+            backward_cost_layer(layer, state);
         }
     }
 }
@@ -314,8 +274,12 @@
     #ifdef GPU
     if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
     #endif
-    forward_network(net, x, y, 1);
-    backward_network(net, x, y);
+    network_state state;
+    state.input = x;
+    state.truth = y;
+    state.train = 1;
+    forward_network(net, state);
+    backward_network(net, state);
     float error = get_network_cost(net);
     update_network(net);
     return error;
@@ -361,15 +325,17 @@
 float train_network_batch(network net, data d, int n)
 {
     int i,j;
+    network_state state;
+    state.train = 1;
     float sum = 0;
     int batch = 2;
     for(i = 0; i < n; ++i){
         for(j = 0; j < batch; ++j){
             int index = rand()%d.X.rows;
-            float *x = d.X.vals[index];
-            float *y = d.y.vals[index];
-            forward_network(net, x, y, 1);
-            backward_network(net, x, y);
+            state.input = d.X.vals[index];
+            state.truth = d.y.vals[index];
+            forward_network(net, state);
+            backward_network(net, state);
             sum += get_network_cost(net);
         }
         update_network(net);
@@ -377,28 +343,6 @@
     return (float)sum/(n*batch);
 }
 
-void set_learning_network(network *net, float rate, float momentum, float decay)
-{
-    int i;
-    net->learning_rate=rate;
-    net->momentum = momentum;
-    net->decay = decay;
-    for(i = 0; i < net->n; ++i){
-        if(net->types[i] == CONVOLUTIONAL){
-            convolutional_layer *layer = (convolutional_layer *)net->layers[i];
-            layer->learning_rate=rate;
-            layer->momentum = momentum;
-            layer->decay = decay;
-        }
-        else if(net->types[i] == CONNECTED){
-            connected_layer *layer = (connected_layer *)net->layers[i];
-            layer->learning_rate=rate;
-            layer->momentum = momentum;
-            layer->decay = decay;
-        }
-    }
-}
-
 void set_batch_network(network *net, int b)
 {
     net->batch = b;
@@ -425,10 +369,6 @@
             detection_layer *layer = (detection_layer *) net->layers[i];
             layer->batch = b;
         }
-        else if(net->types[i] == FREEWEIGHT){
-            freeweight_layer *layer = (freeweight_layer *) net->layers[i];
-            layer->batch = b;
-        }
         else if(net->types[i] == SOFTMAX){
             softmax_layer *layer = (softmax_layer *)net->layers[i];
             layer->batch = b;
@@ -472,15 +412,11 @@
         crop_layer layer = *(crop_layer *) net.layers[i];
         return layer.c*layer.h*layer.w;
     }
-    else if(net.types[i] == FREEWEIGHT){
-        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
-        return layer.inputs;
-    }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
     }
-    printf("Can't find input size\n");
+    fprintf(stderr, "Can't find input size\n");
     return 0;
 }
 
@@ -505,7 +441,7 @@
         image output = get_maxpool_image(layer);
         return output.h*output.w*output.c;
     }
-     else if(net.types[i] == CROP){
+    else if(net.types[i] == CROP){
         crop_layer layer = *(crop_layer *) net.layers[i];
         return layer.c*layer.crop_height*layer.crop_width;
     }
@@ -517,15 +453,11 @@
         dropout_layer layer = *(dropout_layer *) net.layers[i];
         return layer.inputs;
     }
-    else if(net.types[i] == FREEWEIGHT){
-        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
-        return layer.inputs;
-    }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
     }
-    printf("Can't find output size\n");
+    fprintf(stderr, "Can't find output size\n");
     return 0;
 }
 
@@ -650,11 +582,16 @@
 
 float *network_predict(network net, float *input)
 {
-    #ifdef GPU
+#ifdef GPU
     if(gpu_index >= 0)  return network_predict_gpu(net, input);
-    #endif
+#endif
 
-    forward_network(net, input, 0, 0);
+    network_state state;
+    state.input = input;
+    state.truth = 0;
+    state.train = 0;
+    state.delta = 0;
+    forward_network(net, state);
     float *out = get_network_output(net);
     return out;
 }
diff --git a/src/network.h b/src/network.h
index d2fb346..9099b24 100644
--- a/src/network.h
+++ b/src/network.h
@@ -3,6 +3,7 @@
 #define NETWORK_H
 
 #include "image.h"
+#include "params.h"
 #include "data.h"
 
 typedef enum {
@@ -14,7 +15,6 @@
     DETECTION,
     NORMALIZATION,
     DROPOUT,
-    FREEWEIGHT,
     CROP,
     COST
 } LAYER_TYPE;
@@ -31,6 +31,9 @@
     int outputs;
     float *output;
 
+    int inputs;
+    int h, w, c;
+
     #ifdef GPU
     float **input_gpu;
     float **truth_gpu;
@@ -47,9 +50,9 @@
 void compare_networks(network n1, network n2, data d);
 char *get_layer_string(LAYER_TYPE a);
 
-network make_network(int n, int batch);
-void forward_network(network net, float *input, float *truth, int train);
-void backward_network(network net, float *input, float *truth);
+network make_network(int n);
+void forward_network(network net, network_state state);
+void backward_network(network net, network_state state);
 void update_network(network net);
 
 float train_network(network net, data d);
@@ -75,7 +78,6 @@
 void visualize_network(network net);
 int resize_network(network net, int h, int w, int c);
 void set_batch_network(network *net, int b);
-void set_learning_network(network *net, float rate, float momentum, float decay);
 int get_network_input_size(network net);
 float get_network_cost(network net);
 
diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 928c7f9..acc31d7 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -6,6 +6,7 @@
 #include "image.h"
 #include "data.h"
 #include "utils.h"
+#include "params.h"
 
 #include "crop_layer.h"
 #include "connected_layer.h"
@@ -15,7 +16,6 @@
 #include "maxpool_layer.h"
 #include "cost_layer.h"
 #include "normalization_layer.h"
-#include "freeweight_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 }
@@ -24,108 +24,78 @@
 extern "C" float * get_network_delta_gpu_layer(network net, int i);
 float *get_network_output_gpu(network net);
 
-void forward_network_gpu(network net, float * input, float * truth, int train)
+void forward_network_gpu(network net, network_state state)
 {
     int i;
     for(i = 0; i < net.n; ++i){
-        //clock_t time = clock();
         if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer_gpu(layer, input);
-            input = layer.output_gpu;
+            forward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
         }
         else if(net.types[i] == DECONVOLUTIONAL){
-            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-            forward_deconvolutional_layer_gpu(layer, input);
-            input = layer.output_gpu;
+            forward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
         }
         else if(net.types[i] == COST){
-            cost_layer layer = *(cost_layer *)net.layers[i];
-            forward_cost_layer_gpu(layer, input, truth);
+            forward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
         }
         else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer_gpu(layer, input);
-            input = layer.output_gpu;
+            forward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
         }
         else if(net.types[i] == DETECTION){
-            detection_layer layer = *(detection_layer *)net.layers[i];
-            forward_detection_layer_gpu(layer, input, truth);
-            input = layer.output_gpu;
+            forward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
         }
         else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer_gpu(layer, input);
-            input = layer.output_gpu;
+            forward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
         }
         else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer_gpu(layer, input);
-            input = layer.output_gpu;
+            forward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
         }
         else if(net.types[i] == DROPOUT){
-            if(!train) continue;
-            dropout_layer layer = *(dropout_layer *)net.layers[i];
-            forward_dropout_layer_gpu(layer, input);
-            input = layer.output_gpu;
+            forward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
         }
         else if(net.types[i] == CROP){
-            crop_layer layer = *(crop_layer *)net.layers[i];
-            forward_crop_layer_gpu(layer, train, input);
-            input = layer.output_gpu;
+            forward_crop_layer_gpu(*(crop_layer *)net.layers[i], state);
         }
-        //cudaDeviceSynchronize();
-        //printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
+        state.input = get_network_output_gpu_layer(net, i);
     }
 }
 
-void backward_network_gpu(network net, float * input, float *truth)
+void backward_network_gpu(network net, network_state state)
 {
     int i;
-    float * prev_input;
-    float * prev_delta;
+    float * original_input = state.input;
     for(i = net.n-1; i >= 0; --i){
         //clock_t time = clock();
         if(i == 0){
-            prev_input = input;
-            prev_delta = 0;
+            state.input = original_input;
+            state.delta = 0;
         }else{
-            prev_input = get_network_output_gpu_layer(net, i-1);
-            prev_delta = get_network_delta_gpu_layer(net, i-1);
+            state.input = get_network_output_gpu_layer(net, i-1);
+            state.delta = get_network_delta_gpu_layer(net, i-1);
         }
         if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
+            backward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
         }
         else if(net.types[i] == DECONVOLUTIONAL){
-            deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-            backward_deconvolutional_layer_gpu(layer, prev_input, prev_delta);
+            backward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
         }
         else if(net.types[i] == COST){
-            cost_layer layer = *(cost_layer *)net.layers[i];
-            backward_cost_layer_gpu(layer, prev_input, prev_delta);
+            backward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
         }
         else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            backward_connected_layer_gpu(layer, prev_input, prev_delta);
+            backward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
         }
         else if(net.types[i] == DETECTION){
-            detection_layer layer = *(detection_layer *)net.layers[i];
-            backward_detection_layer_gpu(layer, prev_input, prev_delta);
+            backward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
         }
         else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            backward_maxpool_layer_gpu(layer, prev_delta);
+            backward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
         }
         else if(net.types[i] == DROPOUT){
-            dropout_layer layer = *(dropout_layer *)net.layers[i];
-            backward_dropout_layer_gpu(layer, prev_delta);
+            backward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
         }
         else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            backward_softmax_layer_gpu(layer, prev_delta);
+            backward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
         }
-        //printf("Backward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
     }
 }
 
@@ -135,15 +105,15 @@
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer_gpu(layer);
+            update_convolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
         }
         else if(net.types[i] == DECONVOLUTIONAL){
             deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-            update_deconvolutional_layer_gpu(layer);
+            update_deconvolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer_gpu(layer);
+            update_connected_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
         }
     }
 }
@@ -151,35 +121,28 @@
 float * get_network_output_gpu_layer(network net, int i)
 {
     if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output_gpu;
+        return ((convolutional_layer *)net.layers[i]) -> output_gpu;
     }
     else if(net.types[i] == DECONVOLUTIONAL){
-        deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
-        return layer.output_gpu;
+        return ((deconvolutional_layer *)net.layers[i]) -> output_gpu;
     }
     else if(net.types[i] == DETECTION){
-        detection_layer layer = *(detection_layer *)net.layers[i];
-        return layer.output_gpu;
+        return ((detection_layer *)net.layers[i]) -> output_gpu;
     }
     else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.output_gpu;
+        return ((connected_layer *)net.layers[i]) -> output_gpu;
     }
     else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output_gpu;
+        return ((maxpool_layer *)net.layers[i]) -> output_gpu;
     }
     else if(net.types[i] == CROP){
-        crop_layer layer = *(crop_layer *)net.layers[i];
-        return layer.output_gpu;
+        return ((crop_layer *)net.layers[i]) -> output_gpu;
     }
     else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.output_gpu;
-    } else if(net.types[i] == DROPOUT){
-        dropout_layer layer = *(dropout_layer *)net.layers[i];
-        return layer.output_gpu;
+        return ((softmax_layer *)net.layers[i]) -> output_gpu;
+    }
+    else if(net.types[i] == DROPOUT){
+        return get_network_output_gpu_layer(net, i-1);
     }
     return 0;
 }
@@ -219,6 +182,7 @@
 float train_network_datum_gpu(network net, float *x, float *y)
 {
   //clock_t time = clock();
+    network_state state;
     int x_size = get_network_input_size(net)*net.batch;
     int y_size = get_network_output_size(net)*net.batch;
     if(!*net.input_gpu){
@@ -228,12 +192,15 @@
         cuda_push_array(*net.input_gpu, x, x_size);
         cuda_push_array(*net.truth_gpu, y, y_size);
     }
+    state.input = *net.input_gpu;
+    state.truth = *net.truth_gpu;
+    state.train = 1;
   //printf("trans %f\n", sec(clock() - time));
   //time = clock();
-    forward_network_gpu(net, *net.input_gpu, *net.truth_gpu, 1);
+    forward_network_gpu(net, state);
   //printf("forw %f\n", sec(clock() - time));
   //time = clock();
-    backward_network_gpu(net, *net.input_gpu, *net.truth_gpu);
+    backward_network_gpu(net, state);
   //printf("back %f\n", sec(clock() - time));
   //time = clock();
     update_network_gpu(net);
@@ -291,10 +258,14 @@
 {
 
     int size = get_network_input_size(net) * net.batch;
-    float * input_gpu = cuda_make_array(input, size);
-    forward_network_gpu(net, input_gpu, 0, 0);
+    network_state state;
+    state.input = cuda_make_array(input, size);
+    state.truth = 0;
+    state.train = 0;
+    state.delta = 0;
+    forward_network_gpu(net, state);
     float *out = get_network_output_gpu(net);
-    cuda_free(input_gpu);
+    cuda_free(state.input);
     return out;
 }
 
diff --git a/src/normalization_layer.c b/src/normalization_layer.c
index d82451b..3ab318b 100644
--- a/src/normalization_layer.c
+++ b/src/normalization_layer.c
@@ -59,28 +59,29 @@
     }
 }
 
-void forward_normalization_layer(const normalization_layer layer, float *in)
+void forward_normalization_layer(const normalization_layer layer, network_state state)
 {
     int i,j,k;
     memset(layer.sums, 0, layer.h*layer.w*sizeof(float));
     int imsize = layer.h*layer.w;
     for(j = 0; j < layer.size/2; ++j){
-        if(j < layer.c) add_square_array(in+j*imsize, layer.sums, imsize);
+        if(j < layer.c) add_square_array(state.input+j*imsize, layer.sums, imsize);
     }
     for(k = 0; k < layer.c; ++k){
         int next = k+layer.size/2;
         int prev = k-layer.size/2-1;
-        if(next < layer.c) add_square_array(in+next*imsize, layer.sums, imsize);
-        if(prev > 0)       sub_square_array(in+prev*imsize, layer.sums, imsize);
+        if(next < layer.c) add_square_array(state.input+next*imsize, layer.sums, imsize);
+        if(prev > 0)       sub_square_array(state.input+prev*imsize, layer.sums, imsize);
         for(i = 0; i < imsize; ++i){
-            layer.output[k*imsize + i] = in[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
+            layer.output[k*imsize + i] = state.input[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
         }
     }
 }
 
-void backward_normalization_layer(const normalization_layer layer, float *in, float *delta)
+void backward_normalization_layer(const normalization_layer layer, network_state state)
 {
-    //TODO!
+    // TODO!
+    // OR NOT TODO!!
 }
 
 void visualize_normalization_layer(normalization_layer layer, char *window)
diff --git a/src/normalization_layer.h b/src/normalization_layer.h
index 914fe7d..11f2827 100644
--- a/src/normalization_layer.h
+++ b/src/normalization_layer.h
@@ -2,6 +2,7 @@
 #define NORMALIZATION_LAYER_H
 
 #include "image.h"
+#include "params.h"
 
 typedef struct {
     int batch;
@@ -18,8 +19,8 @@
 image get_normalization_image(normalization_layer layer);
 normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa);
 void resize_normalization_layer(normalization_layer *layer, int h, int w);
-void forward_normalization_layer(const normalization_layer layer, float *in);
-void backward_normalization_layer(const normalization_layer layer, float *in, float *delta);
+void forward_normalization_layer(const normalization_layer layer, network_state state);
+void backward_normalization_layer(const normalization_layer layer, network_state state);
 void visualize_normalization_layer(normalization_layer layer, char *window);
 
 #endif
diff --git a/src/params.h b/src/params.h
new file mode 100644
index 0000000..7343a07
--- /dev/null
+++ b/src/params.h
@@ -0,0 +1,12 @@
+#ifndef PARAMS_H
+#define PARAMS_H
+
+typedef struct {
+    float *truth;
+    float *input;
+    float *delta;
+    int train;
+} network_state;
+
+#endif
+
diff --git a/src/parser.c b/src/parser.c
index 7b1057e..d7c4a31 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -14,7 +14,6 @@
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 #include "detection_layer.h"
-#include "freeweight_layer.h"
 #include "list.h"
 #include "option_list.h"
 #include "utils.h"
@@ -24,12 +23,12 @@
     list *options;
 }section;
 
+int is_network(section *s);
 int is_convolutional(section *s);
 int is_deconvolutional(section *s);
 int is_connected(section *s);
 int is_maxpool(section *s);
 int is_dropout(section *s);
-int is_freeweight(section *s);
 int is_softmax(section *s);
 int is_crop(section *s);
 int is_cost(section *s);
@@ -69,38 +68,31 @@
     }
 }
 
-deconvolutional_layer *parse_deconvolutional(list *options, network *net, int count)
+typedef struct size_params{
+    int batch;
+    int inputs;
+    int h;
+    int w;
+    int c;
+} size_params;
+
+deconvolutional_layer *parse_deconvolutional(list *options, size_params params)
 {
-    int h,w,c;
-    float learning_rate, momentum, decay;
     int n = option_find_int(options, "filters",1);
     int size = option_find_int(options, "size",1);
     int stride = option_find_int(options, "stride",1);
     char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
-    if(count == 0){
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-        net->seen = option_find_int(options, "seen",0);
-    }else{
-        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
-        momentum = option_find_float_quiet(options, "momentum", net->momentum);
-        decay = option_find_float_quiet(options, "decay", net->decay);
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before deconvolutional layer must output image.");
-    }
-    deconvolutional_layer *layer = make_deconvolutional_layer(net->batch,h,w,c,n,size,stride,activation,learning_rate,momentum,decay);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
+
+    deconvolutional_layer *layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
+
     char *weights = option_find_str(options, "weights", 0);
     char *biases = option_find_str(options, "biases", 0);
     parse_data(weights, layer->filters, c*n*size*size);
@@ -112,39 +104,24 @@
     return layer;
 }
 
-convolutional_layer *parse_convolutional(list *options, network *net, int count)
+convolutional_layer *parse_convolutional(list *options, size_params params)
 {
-    int h,w,c;
-    float learning_rate, momentum, decay;
     int n = option_find_int(options, "filters",1);
     int size = option_find_int(options, "size",1);
     int stride = option_find_int(options, "stride",1);
     int pad = option_find_int(options, "pad",0);
     char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
-    if(count == 0){
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-        net->seen = option_find_int(options, "seen",0);
-    }else{
-        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
-        momentum = option_find_float_quiet(options, "momentum", net->momentum);
-        decay = option_find_float_quiet(options, "decay", net->decay);
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
-    }
-    convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before convolutional layer must output image.");
+
+    convolutional_layer *layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
+
     char *weights = option_find_str(options, "weights", 0);
     char *biases = option_find_str(options, "biases", 0);
     parse_data(weights, layer->filters, c*n*size*size);
@@ -156,33 +133,18 @@
     return layer;
 }
 
-connected_layer *parse_connected(list *options, network *net, int count)
+connected_layer *parse_connected(list *options, size_params params)
 {
-    int input;
-    float learning_rate, momentum, decay;
     int output = option_find_int(options, "output",1);
     char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-    }else{
-        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
-        momentum = option_find_float_quiet(options, "momentum", net->momentum);
-        decay = option_find_float_quiet(options, "decay", net->decay);
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
+
+    connected_layer *layer = make_connected_layer(params.batch, params.inputs, output, activation);
+
     char *weights = option_find_str(options, "weights", 0);
     char *biases = option_find_str(options, "biases", 0);
     parse_data(biases, layer->biases, output);
-    parse_data(weights, layer->weights, input*output);
+    parse_data(weights, layer->weights, params.inputs*output);
     #ifdef GPU
     if(weights || biases) push_connected_layer(*layer);
     #endif
@@ -190,235 +152,188 @@
     return layer;
 }
 
-softmax_layer *parse_softmax(list *options, network *net, int count)
+softmax_layer *parse_softmax(list *options, size_params params)
 {
-    int input;
     int groups = option_find_int(options, "groups",1);
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-        net->seen = option_find_int(options, "seen",0);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    softmax_layer *layer = make_softmax_layer(net->batch, groups, input);
+    softmax_layer *layer = make_softmax_layer(params.batch, params.inputs, groups);
     option_unused(options);
     return layer;
 }
 
-detection_layer *parse_detection(list *options, network *net, int count)
+detection_layer *parse_detection(list *options, size_params params)
 {
-    int input;
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-        net->seen = option_find_int(options, "seen",0);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
     int coords = option_find_int(options, "coords", 1);
     int classes = option_find_int(options, "classes", 1);
     int rescore = option_find_int(options, "rescore", 1);
-    detection_layer *layer = make_detection_layer(net->batch, input, classes, coords, rescore);
+    detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore);
     option_unused(options);
     return layer;
 }
 
-cost_layer *parse_cost(list *options, network *net, int count)
+cost_layer *parse_cost(list *options, size_params params)
 {
-    int input;
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-        net->seen = option_find_int(options, "seen",0);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
     char *type_s = option_find_str(options, "type", "sse");
     COST_TYPE type = get_cost_type(type_s);
-    cost_layer *layer = make_cost_layer(net->batch, input, type);
+    cost_layer *layer = make_cost_layer(params.batch, params.inputs, type);
     option_unused(options);
     return layer;
 }
 
-crop_layer *parse_crop(list *options, network *net, int count)
+crop_layer *parse_crop(list *options, size_params params)
 {
-    float learning_rate, momentum, decay;
-    int h,w,c;
     int crop_height = option_find_int(options, "crop_height",1);
     int crop_width = option_find_int(options, "crop_width",1);
     int flip = option_find_int(options, "flip",0);
-    if(count == 0){
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-        net->seen = option_find_int(options, "seen",0);
-    }else{
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before crop layer must output image.");
-    }
-    crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before crop layer must output image.");
+
+    crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip);
     option_unused(options);
     return layer;
 }
 
-maxpool_layer *parse_maxpool(list *options, network *net, int count)
+maxpool_layer *parse_maxpool(list *options, size_params params)
 {
-    int h,w,c;
     int stride = option_find_int(options, "stride",1);
     int size = option_find_int(options, "size",stride);
-    if(count == 0){
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-        net->seen = option_find_int(options, "seen",0);
-    }else{
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
-    }
-    maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before maxpool layer must output image.");
+
+    maxpool_layer *layer = make_maxpool_layer(batch,h,w,c,size,stride);
     option_unused(options);
     return layer;
 }
 
-/*
-freeweight_layer *parse_freeweight(list *options, network *net, int count)
+dropout_layer *parse_dropout(list *options, size_params params)
 {
-    int input;
-    if(count == 0){
-        net->batch = option_find_int(options, "batch",1);
-        input = option_find_int(options, "input",1);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    freeweight_layer *layer = make_freeweight_layer(net->batch,input);
-    option_unused(options);
-    return layer;
-}
-*/
-
-dropout_layer *parse_dropout(list *options, network *net, int count)
-{
-    int input;
     float probability = option_find_float(options, "probability", .5);
-    if(count == 0){
-        net->batch = option_find_int(options, "batch",1);
-        input = option_find_int(options, "input",1);
-        float learning_rate = option_find_float(options, "learning_rate", .001);
-        float momentum = option_find_float(options, "momentum", .9);
-        float decay = option_find_float(options, "decay", .0001);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-        net->seen = option_find_int(options, "seen",0);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    dropout_layer *layer = make_dropout_layer(net->batch,input,probability);
+    dropout_layer *layer = make_dropout_layer(params.batch, params.inputs, probability);
     option_unused(options);
     return layer;
 }
 
-normalization_layer *parse_normalization(list *options, network *net, int count)
+normalization_layer *parse_normalization(list *options, size_params params)
 {
-    int h,w,c;
     int size = option_find_int(options, "size",1);
     float alpha = option_find_float(options, "alpha", 0.);
     float beta = option_find_float(options, "beta", 1.);
     float kappa = option_find_float(options, "kappa", 1.);
-    if(count == 0){
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-        net->seen = option_find_int(options, "seen",0);
-    }else{
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
-    }
-    normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before normalization layer must output image.");
+
+    normalization_layer *layer = make_normalization_layer(batch,h,w,c,size, alpha, beta, kappa);
     option_unused(options);
     return layer;
 }
 
+void parse_net_options(list *options, network *net)
+{
+    net->batch = option_find_int(options, "batch",1);
+    net->learning_rate = option_find_float(options, "learning_rate", .001);
+    net->momentum = option_find_float(options, "momentum", .9);
+    net->decay = option_find_float(options, "decay", .0001);
+    net->seen = option_find_int(options, "seen",0);
+
+    net->h = option_find_int_quiet(options, "height",0);
+    net->w = option_find_int_quiet(options, "width",0);
+    net->c = option_find_int_quiet(options, "channels",0);
+    net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
+    if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
+}
+
 network parse_network_cfg(char *filename)
 {
     list *sections = read_cfg(filename);
-    network net = make_network(sections->size, 0);
-
     node *n = sections->front;
+    if(!n) error("Config file has no sections");
+    network net = make_network(sections->size - 1);
+    size_params params;
+
+    section *s = (section *)n->val;
+    list *options = s->options;
+    if(!is_network(s)) error("First section must be [net] or [network]");
+    parse_net_options(options, &net);
+
+    params.h = net.h;
+    params.w = net.w;
+    params.c = net.c;
+    params.inputs = net.inputs;
+    params.batch = net.batch;
+
+    n = n->next;
     int count = 0;
     while(n){
-        section *s = (section *)n->val;
-        list *options = s->options;
+        fprintf(stderr, "%d: ", count);
+        s = (section *)n->val;
+        options = s->options;
         if(is_convolutional(s)){
-            convolutional_layer *layer = parse_convolutional(options, &net, count);
+            convolutional_layer *layer = parse_convolutional(options, params);
             net.types[count] = CONVOLUTIONAL;
             net.layers[count] = layer;
         }else if(is_deconvolutional(s)){
-            deconvolutional_layer *layer = parse_deconvolutional(options, &net, count);
+            deconvolutional_layer *layer = parse_deconvolutional(options, params);
             net.types[count] = DECONVOLUTIONAL;
             net.layers[count] = layer;
         }else if(is_connected(s)){
-            connected_layer *layer = parse_connected(options, &net, count);
+            connected_layer *layer = parse_connected(options, params);
             net.types[count] = CONNECTED;
             net.layers[count] = layer;
         }else if(is_crop(s)){
-            crop_layer *layer = parse_crop(options, &net, count);
+            crop_layer *layer = parse_crop(options, params);
             net.types[count] = CROP;
             net.layers[count] = layer;
         }else if(is_cost(s)){
-            cost_layer *layer = parse_cost(options, &net, count);
+            cost_layer *layer = parse_cost(options, params);
             net.types[count] = COST;
             net.layers[count] = layer;
         }else if(is_detection(s)){
-            detection_layer *layer = parse_detection(options, &net, count);
+            detection_layer *layer = parse_detection(options, params);
             net.types[count] = DETECTION;
             net.layers[count] = layer;
         }else if(is_softmax(s)){
-            softmax_layer *layer = parse_softmax(options, &net, count);
+            softmax_layer *layer = parse_softmax(options, params);
             net.types[count] = SOFTMAX;
             net.layers[count] = layer;
         }else if(is_maxpool(s)){
-            maxpool_layer *layer = parse_maxpool(options, &net, count);
+            maxpool_layer *layer = parse_maxpool(options, params);
             net.types[count] = MAXPOOL;
             net.layers[count] = layer;
         }else if(is_normalization(s)){
-            normalization_layer *layer = parse_normalization(options, &net, count);
+            normalization_layer *layer = parse_normalization(options, params);
             net.types[count] = NORMALIZATION;
             net.layers[count] = layer;
         }else if(is_dropout(s)){
-            dropout_layer *layer = parse_dropout(options, &net, count);
+            dropout_layer *layer = parse_dropout(options, params);
             net.types[count] = DROPOUT;
             net.layers[count] = layer;
-        }else if(is_freeweight(s)){
-            //freeweight_layer *layer = parse_freeweight(options, &net, count);
-            //net.types[count] = FREEWEIGHT;
-            //net.layers[count] = layer;
-            fprintf(stderr, "Type not recognized: %s\n", s->type);
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
         free_section(s);
-        ++count;
         n = n->next;
+        if(n){
+            image im = get_network_image_layer(net, count);
+            params.h = im.h;
+            params.w = im.w;
+            params.c = im.c;
+            params.inputs = get_network_output_size_layer(net, count);
+        }
+        ++count;
     }   
     free_list(sections);
     net.outputs = get_network_output_size(net);
@@ -448,6 +363,11 @@
     return (strcmp(s->type, "[conv]")==0
             || strcmp(s->type, "[convolutional]")==0);
 }
+int is_network(section *s)
+{
+    return (strcmp(s->type, "[net]")==0
+            || strcmp(s->type, "[network]")==0);
+}
 int is_connected(section *s)
 {
     return (strcmp(s->type, "[conn]")==0
@@ -462,10 +382,6 @@
 {
     return (strcmp(s->type, "[dropout]")==0);
 }
-int is_freeweight(section *s)
-{
-    return (strcmp(s->type, "[freeweight]")==0);
-}
 
 int is_softmax(section *s)
 {
@@ -533,29 +449,11 @@
 
 void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
 {
-    #ifdef GPU
+#ifdef GPU
     if(gpu_index >= 0)  pull_convolutional_layer(*l);
-    #endif
+#endif
     int i;
     fprintf(fp, "[convolutional]\n");
-    if(count == 0) {
-        fprintf(fp,   "batch=%d\n"
-                "height=%d\n"
-                "width=%d\n"
-                "channels=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n"
-                "seen=%d\n",
-                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
-    } else {
-        if(l->learning_rate != net.learning_rate)
-            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
-        if(l->momentum != net.momentum)
-            fprintf(fp, "momentum=%g\n", l->momentum);
-        if(l->decay != net.decay)
-            fprintf(fp, "decay=%g\n", l->decay);
-    }
     fprintf(fp, "filters=%d\n"
             "size=%d\n"
             "stride=%d\n"
@@ -573,29 +471,11 @@
 
 void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
 {
-    #ifdef GPU
+#ifdef GPU
     if(gpu_index >= 0)  pull_deconvolutional_layer(*l);
-    #endif
+#endif
     int i;
     fprintf(fp, "[deconvolutional]\n");
-    if(count == 0) {
-        fprintf(fp,   "batch=%d\n"
-                "height=%d\n"
-                "width=%d\n"
-                "channels=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n"
-                "seen=%d\n",
-                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
-    } else {
-        if(l->learning_rate != net.learning_rate)
-            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
-        if(l->momentum != net.momentum)
-            fprintf(fp, "momentum=%g\n", l->momentum);
-        if(l->decay != net.decay)
-            fprintf(fp, "decay=%g\n", l->decay);
-    }
     fprintf(fp, "filters=%d\n"
             "size=%d\n"
             "stride=%d\n"
@@ -610,47 +490,19 @@
     fprintf(fp, "\n\n");
 }
 
-void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
-{
-    fprintf(fp, "[freeweight]\n");
-    if(count == 0){
-        fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
-    }
-    fprintf(fp, "\n");
-}
-
 void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
 {
     fprintf(fp, "[dropout]\n");
-    if(count == 0){
-        fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    }
     fprintf(fp, "probability=%g\n\n", l->probability);
 }
 
 void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
 {
-    #ifdef GPU
+#ifdef GPU
     if(gpu_index >= 0) pull_connected_layer(*l);
-    #endif
+#endif
     int i;
     fprintf(fp, "[connected]\n");
-    if(count == 0){
-        fprintf(fp, "batch=%d\n"
-                "input=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n"
-                "seen=%d\n",
-                l->batch, l->inputs, l->learning_rate, l->momentum, l->decay, net.seen);
-    } else {
-        if(l->learning_rate != net.learning_rate)
-            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
-        if(l->momentum != net.momentum)
-            fprintf(fp, "momentum=%g\n", l->momentum);
-        if(l->decay != net.decay)
-            fprintf(fp, "decay=%g\n", l->decay);
-    }
     fprintf(fp, "output=%d\n"
             "activation=%s\n",
             l->outputs,
@@ -666,39 +518,18 @@
 void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
 {
     fprintf(fp, "[crop]\n");
-    if(count == 0) {
-        fprintf(fp,   "batch=%d\n"
-                "height=%d\n"
-                "width=%d\n"
-                "channels=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n"
-                "seen=%d\n",
-                l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay, net.seen);
-    }
     fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
 }
 
 void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
 {
     fprintf(fp, "[maxpool]\n");
-    if(count == 0) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
     fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
 }
 
 void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
 {
     fprintf(fp, "[localresponsenormalization]\n");
-    if(count == 0) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
     fprintf(fp, "size=%d\n"
             "alpha=%g\n"
             "beta=%g\n"
@@ -708,7 +539,6 @@
 void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
 {
     fprintf(fp, "[softmax]\n");
-    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
     fprintf(fp, "\n");
 }
 
@@ -722,7 +552,6 @@
 void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
 {
     fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
-    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
     fprintf(fp, "\n");
 }
 
@@ -741,33 +570,33 @@
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *) net.layers[i];
-            #ifdef GPU
+#ifdef GPU
             if(gpu_index >= 0){
                 pull_convolutional_layer(layer);
             }
-            #endif
+#endif
             int num = layer.n*layer.c*layer.size*layer.size;
             fwrite(layer.biases, sizeof(float), layer.n, fp);
             fwrite(layer.filters, sizeof(float), num, fp);
         }
         if(net.types[i] == DECONVOLUTIONAL){
             deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
-            #ifdef GPU
+#ifdef GPU
             if(gpu_index >= 0){
                 pull_deconvolutional_layer(layer);
             }
-            #endif
+#endif
             int num = layer.n*layer.c*layer.size*layer.size;
             fwrite(layer.biases, sizeof(float), layer.n, fp);
             fwrite(layer.filters, sizeof(float), num, fp);
         }
         if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *) net.layers[i];
-            #ifdef GPU
+#ifdef GPU
             if(gpu_index >= 0){
                 pull_connected_layer(layer);
             }
-            #endif
+#endif
             fwrite(layer.biases, sizeof(float), layer.outputs, fp);
             fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
         }
@@ -785,8 +614,7 @@
     fread(&net->momentum, sizeof(float), 1, fp);
     fread(&net->decay, sizeof(float), 1, fp);
     fread(&net->seen, sizeof(int), 1, fp);
-    set_learning_network(net, net->learning_rate, net->momentum, net->decay);
-    
+
     int i;
     for(i = 0; i < net->n && i < cutoff; ++i){
         if(net->types[i] == CONVOLUTIONAL){
@@ -794,32 +622,32 @@
             int num = layer.n*layer.c*layer.size*layer.size;
             fread(layer.biases, sizeof(float), layer.n, fp);
             fread(layer.filters, sizeof(float), num, fp);
-            #ifdef GPU
+#ifdef GPU
             if(gpu_index >= 0){
                 push_convolutional_layer(layer);
             }
-            #endif
+#endif
         }
         if(net->types[i] == DECONVOLUTIONAL){
             deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
             int num = layer.n*layer.c*layer.size*layer.size;
             fread(layer.biases, sizeof(float), layer.n, fp);
             fread(layer.filters, sizeof(float), num, fp);
-            #ifdef GPU
+#ifdef GPU
             if(gpu_index >= 0){
                 push_deconvolutional_layer(layer);
             }
-            #endif
+#endif
         }
         if(net->types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *) net->layers[i];
             fread(layer.biases, sizeof(float), layer.outputs, fp);
             fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
-            #ifdef GPU
+#ifdef GPU
             if(gpu_index >= 0){
                 push_connected_layer(layer);
             }
-            #endif
+#endif
         }
     }
     fclose(fp);
@@ -847,8 +675,6 @@
             print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
         else if(net.types[i] == MAXPOOL)
             print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
-        else if(net.types[i] == FREEWEIGHT)
-            print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
         else if(net.types[i] == DROPOUT)
             print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
         else if(net.types[i] == NORMALIZATION)
diff --git a/src/softmax_layer.c b/src/softmax_layer.c
index a200ae5..e344d16 100644
--- a/src/softmax_layer.c
+++ b/src/softmax_layer.c
@@ -7,7 +7,7 @@
 #include <stdio.h>
 #include <assert.h>
 
-softmax_layer *make_softmax_layer(int batch, int groups, int inputs)
+softmax_layer *make_softmax_layer(int batch, int inputs, int groups)
 {
     assert(inputs%groups == 0);
     fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
@@ -42,21 +42,21 @@
     }
 }
 
-void forward_softmax_layer(const softmax_layer layer, float *input)
+void forward_softmax_layer(const softmax_layer layer, network_state state)
 {
     int b;
     int inputs = layer.inputs / layer.groups;
     int batch = layer.batch * layer.groups;
     for(b = 0; b < batch; ++b){
-        softmax_array(input+b*inputs, inputs, layer.output+b*inputs);
+        softmax_array(state.input+b*inputs, inputs, layer.output+b*inputs);
     }
 }
 
-void backward_softmax_layer(const softmax_layer layer, float *delta)
+void backward_softmax_layer(const softmax_layer layer, network_state state)
 {
     int i;
     for(i = 0; i < layer.inputs*layer.batch; ++i){
-        delta[i] = layer.delta[i];
+        state.delta[i] = layer.delta[i];
     }
 }
 
diff --git a/src/softmax_layer.h b/src/softmax_layer.h
index 3632c74..ecdec1e 100644
--- a/src/softmax_layer.h
+++ b/src/softmax_layer.h
@@ -1,5 +1,6 @@
 #ifndef SOFTMAX_LAYER_H
 #define SOFTMAX_LAYER_H
+#include "params.h"
 
 typedef struct {
     int inputs;
@@ -14,14 +15,14 @@
 } softmax_layer;
 
 void softmax_array(float *input, int n, float *output);
-softmax_layer *make_softmax_layer(int batch, int groups, int inputs);
-void forward_softmax_layer(const softmax_layer layer, float *input);
-void backward_softmax_layer(const softmax_layer layer, float *delta);
+softmax_layer *make_softmax_layer(int batch, int inputs, int groups);
+void forward_softmax_layer(const softmax_layer layer, network_state state);
+void backward_softmax_layer(const softmax_layer layer, network_state state);
 
 #ifdef GPU
 void pull_softmax_layer_output(const softmax_layer layer);
-void forward_softmax_layer_gpu(const softmax_layer layer, float *input);
-void backward_softmax_layer_gpu(const softmax_layer layer, float *delta);
+void forward_softmax_layer_gpu(const softmax_layer layer, network_state state);
+void backward_softmax_layer_gpu(const softmax_layer layer, network_state state);
 #endif
 
 #endif
diff --git a/src/softmax_layer_kernels.cu b/src/softmax_layer_kernels.cu
index c0e8bc3..0529f75 100644
--- a/src/softmax_layer_kernels.cu
+++ b/src/softmax_layer_kernels.cu
@@ -32,23 +32,17 @@
     cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch);
 }
 
-extern "C" void forward_softmax_layer_gpu(const softmax_layer layer, float *input)
+extern "C" void forward_softmax_layer_gpu(const softmax_layer layer, network_state state)
 {
     int inputs = layer.inputs / layer.groups;
     int batch = layer.batch * layer.groups;
-    forward_softmax_layer_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, batch, input, layer.output_gpu);
+    forward_softmax_layer_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, batch, state.input, layer.output_gpu);
     check_error(cudaPeekAtLastError());
-
-    /*
-    cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
-    int z;
-    for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]);
-    */
 }
 
-extern "C" void backward_softmax_layer_gpu(const softmax_layer layer, float *delta)
+extern "C" void backward_softmax_layer_gpu(const softmax_layer layer, network_state state)
 {
-    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, delta, 1);
+    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, state.delta, 1);
 }
 
 /* This is if you want softmax w/o log-loss classification. You probably don't.

--
Gitblit v1.10.0