From dcb000b553d051429a49c8729dc5b1af632e8532 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 12 Mar 2015 05:20:15 +0000
Subject: [PATCH] refactoring and added DARK ZONE
---
src/network_kernels.cu | 133 +++++++++++++++++---------------------------
1 files changed, 52 insertions(+), 81 deletions(-)
diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index 928c7f9..acc31d7 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -6,6 +6,7 @@
#include "image.h"
#include "data.h"
#include "utils.h"
+#include "params.h"
#include "crop_layer.h"
#include "connected_layer.h"
@@ -15,7 +16,6 @@
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
-#include "freeweight_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
}
@@ -24,108 +24,78 @@
extern "C" float * get_network_delta_gpu_layer(network net, int i);
float *get_network_output_gpu(network net);
-void forward_network_gpu(network net, float * input, float * truth, int train)
+void forward_network_gpu(network net, network_state state)
{
int i;
for(i = 0; i < net.n; ++i){
- //clock_t time = clock();
if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- forward_convolutional_layer_gpu(layer, input);
- input = layer.output_gpu;
+ forward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
}
else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- forward_deconvolutional_layer_gpu(layer, input);
- input = layer.output_gpu;
+ forward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
}
else if(net.types[i] == COST){
- cost_layer layer = *(cost_layer *)net.layers[i];
- forward_cost_layer_gpu(layer, input, truth);
+ forward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
}
else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- forward_connected_layer_gpu(layer, input);
- input = layer.output_gpu;
+ forward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
}
else if(net.types[i] == DETECTION){
- detection_layer layer = *(detection_layer *)net.layers[i];
- forward_detection_layer_gpu(layer, input, truth);
- input = layer.output_gpu;
+ forward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
}
else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- forward_maxpool_layer_gpu(layer, input);
- input = layer.output_gpu;
+ forward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
}
else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- forward_softmax_layer_gpu(layer, input);
- input = layer.output_gpu;
+ forward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
}
else if(net.types[i] == DROPOUT){
- if(!train) continue;
- dropout_layer layer = *(dropout_layer *)net.layers[i];
- forward_dropout_layer_gpu(layer, input);
- input = layer.output_gpu;
+ forward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
}
else if(net.types[i] == CROP){
- crop_layer layer = *(crop_layer *)net.layers[i];
- forward_crop_layer_gpu(layer, train, input);
- input = layer.output_gpu;
+ forward_crop_layer_gpu(*(crop_layer *)net.layers[i], state);
}
- //cudaDeviceSynchronize();
- //printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
+ state.input = get_network_output_gpu_layer(net, i);
}
}
-void backward_network_gpu(network net, float * input, float *truth)
+void backward_network_gpu(network net, network_state state)
{
int i;
- float * prev_input;
- float * prev_delta;
+ float * original_input = state.input;
for(i = net.n-1; i >= 0; --i){
//clock_t time = clock();
if(i == 0){
- prev_input = input;
- prev_delta = 0;
+ state.input = original_input;
+ state.delta = 0;
}else{
- prev_input = get_network_output_gpu_layer(net, i-1);
- prev_delta = get_network_delta_gpu_layer(net, i-1);
+ state.input = get_network_output_gpu_layer(net, i-1);
+ state.delta = get_network_delta_gpu_layer(net, i-1);
}
if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
+ backward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
}
else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- backward_deconvolutional_layer_gpu(layer, prev_input, prev_delta);
+ backward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
}
else if(net.types[i] == COST){
- cost_layer layer = *(cost_layer *)net.layers[i];
- backward_cost_layer_gpu(layer, prev_input, prev_delta);
+ backward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
}
else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- backward_connected_layer_gpu(layer, prev_input, prev_delta);
+ backward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
}
else if(net.types[i] == DETECTION){
- detection_layer layer = *(detection_layer *)net.layers[i];
- backward_detection_layer_gpu(layer, prev_input, prev_delta);
+ backward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
}
else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- backward_maxpool_layer_gpu(layer, prev_delta);
+ backward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
}
else if(net.types[i] == DROPOUT){
- dropout_layer layer = *(dropout_layer *)net.layers[i];
- backward_dropout_layer_gpu(layer, prev_delta);
+ backward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
}
else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- backward_softmax_layer_gpu(layer, prev_delta);
+ backward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
}
- //printf("Backward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
}
}
@@ -135,15 +105,15 @@
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- update_convolutional_layer_gpu(layer);
+ update_convolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
}
else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- update_deconvolutional_layer_gpu(layer);
+ update_deconvolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
- update_connected_layer_gpu(layer);
+ update_connected_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
}
}
}
@@ -151,35 +121,28 @@
float * get_network_output_gpu_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- return layer.output_gpu;
+ return ((convolutional_layer *)net.layers[i]) -> output_gpu;
}
else if(net.types[i] == DECONVOLUTIONAL){
- deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
- return layer.output_gpu;
+ return ((deconvolutional_layer *)net.layers[i]) -> output_gpu;
}
else if(net.types[i] == DETECTION){
- detection_layer layer = *(detection_layer *)net.layers[i];
- return layer.output_gpu;
+ return ((detection_layer *)net.layers[i]) -> output_gpu;
}
else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- return layer.output_gpu;
+ return ((connected_layer *)net.layers[i]) -> output_gpu;
}
else if(net.types[i] == MAXPOOL){
- maxpool_layer layer = *(maxpool_layer *)net.layers[i];
- return layer.output_gpu;
+ return ((maxpool_layer *)net.layers[i]) -> output_gpu;
}
else if(net.types[i] == CROP){
- crop_layer layer = *(crop_layer *)net.layers[i];
- return layer.output_gpu;
+ return ((crop_layer *)net.layers[i]) -> output_gpu;
}
else if(net.types[i] == SOFTMAX){
- softmax_layer layer = *(softmax_layer *)net.layers[i];
- return layer.output_gpu;
- } else if(net.types[i] == DROPOUT){
- dropout_layer layer = *(dropout_layer *)net.layers[i];
- return layer.output_gpu;
+ return ((softmax_layer *)net.layers[i]) -> output_gpu;
+ }
+ else if(net.types[i] == DROPOUT){
+ return get_network_output_gpu_layer(net, i-1);
}
return 0;
}
@@ -219,6 +182,7 @@
float train_network_datum_gpu(network net, float *x, float *y)
{
//clock_t time = clock();
+ network_state state;
int x_size = get_network_input_size(net)*net.batch;
int y_size = get_network_output_size(net)*net.batch;
if(!*net.input_gpu){
@@ -228,12 +192,15 @@
cuda_push_array(*net.input_gpu, x, x_size);
cuda_push_array(*net.truth_gpu, y, y_size);
}
+ state.input = *net.input_gpu;
+ state.truth = *net.truth_gpu;
+ state.train = 1;
//printf("trans %f\n", sec(clock() - time));
//time = clock();
- forward_network_gpu(net, *net.input_gpu, *net.truth_gpu, 1);
+ forward_network_gpu(net, state);
//printf("forw %f\n", sec(clock() - time));
//time = clock();
- backward_network_gpu(net, *net.input_gpu, *net.truth_gpu);
+ backward_network_gpu(net, state);
//printf("back %f\n", sec(clock() - time));
//time = clock();
update_network_gpu(net);
@@ -291,10 +258,14 @@
{
int size = get_network_input_size(net) * net.batch;
- float * input_gpu = cuda_make_array(input, size);
- forward_network_gpu(net, input_gpu, 0, 0);
+ network_state state;
+ state.input = cuda_make_array(input, size);
+ state.truth = 0;
+ state.train = 0;
+ state.delta = 0;
+ forward_network_gpu(net, state);
float *out = get_network_output_gpu(net);
- cuda_free(input_gpu);
+ cuda_free(state.input);
return out;
}
--
Gitblit v1.10.0