From dda993f3dd3c753dfd580d485b39c1001830fee4 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Thu, 22 Feb 2018 19:54:40 +0000
Subject: [PATCH] Use half_float16 instead of float32 if defined both CUDNN and CUDNN_HALF. Use Tensor Cores.

---
 src/convolutional_layer.c |  911 +++++++++++++++++++++++++++++++++++---------------------
 1 files changed, 562 insertions(+), 349 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index bae06d3..6865808 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -1,419 +1,632 @@
 #include "convolutional_layer.h"
 #include "utils.h"
-#include "mini_blas.h"
+#include "batchnorm_layer.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "blas.h"
+#include "gemm.h"
 #include <stdio.h>
 #include <time.h>
 
-int convolutional_out_height(convolutional_layer layer)
+#ifdef CUDNN
+#pragma comment(lib, "cudnn.lib")  
+#endif
+
+#ifdef AI2
+#include "xnor_layer.h"
+#endif
+
+#ifndef AI2
+#define AI2 0
+void forward_xnor_layer(layer l, network_state state);
+#endif
+
+void swap_binary(convolutional_layer *l)
 {
-    int h = layer.h;
-    if (!layer.pad) h -= layer.size;
-    else h -= 1;
-    return h/layer.stride + 1;
+    float *swap = l->weights;
+    l->weights = l->binary_weights;
+    l->binary_weights = swap;
+
+    #ifdef GPU
+    swap = l->weights_gpu;
+    l->weights_gpu = l->binary_weights_gpu;
+    l->binary_weights_gpu = swap;
+    #endif
 }
 
-int convolutional_out_width(convolutional_layer layer)
+void binarize_weights(float *weights, int n, int size, float *binary)
 {
-    int w = layer.w;
-    if (!layer.pad) w -= layer.size;
-    else w -= 1;
-    return w/layer.stride + 1;
+    int i, f;
+    for(f = 0; f < n; ++f){
+        float mean = 0;
+        for(i = 0; i < size; ++i){
+            mean += fabs(weights[f*size + i]);
+        }
+        mean = mean / size;
+        for(i = 0; i < size; ++i){
+            binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
+        }
+    }
 }
 
-image get_convolutional_image(convolutional_layer layer)
-{
-    int h,w,c;
-    h = convolutional_out_height(layer);
-    w = convolutional_out_width(layer);
-    c = layer.n;
-    return float_to_image(h,w,c,layer.output);
-}
-
-image get_convolutional_delta(convolutional_layer layer)
-{
-    int h,w,c;
-    h = convolutional_out_height(layer);
-    w = convolutional_out_width(layer);
-    c = layer.n;
-    return float_to_image(h,w,c,layer.delta);
-}
-
-convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
+void binarize_cpu(float *input, int n, float *binary)
 {
     int i;
-    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
-    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
-
-    layer->learning_rate = learning_rate;
-    layer->momentum = momentum;
-    layer->decay = decay;
-
-    layer->h = h;
-    layer->w = w;
-    layer->c = c;
-    layer->n = n;
-    layer->batch = batch;
-    layer->stride = stride;
-    layer->size = size;
-    layer->pad = pad;
-
-    layer->filters = calloc(c*n*size*size, sizeof(float));
-    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
-    layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
-
-    layer->biases = calloc(n, sizeof(float));
-    layer->bias_updates = calloc(n, sizeof(float));
-    layer->bias_momentum = calloc(n, sizeof(float));
-    float scale = 1./(size*size*c);
-    scale = .01;
-    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
     for(i = 0; i < n; ++i){
-        //layer->biases[i] = rand_normal()*scale + scale;
-        layer->biases[i] = .5;
+        binary[i] = (input[i] > 0) ? 1 : -1;
     }
-    int out_h = convolutional_out_height(*layer);
-    int out_w = convolutional_out_width(*layer);
-
-    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
-    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
-    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
-    #ifdef GPU
-    layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
-    layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
-    layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
-
-    layer->biases_cl = cl_make_array(layer->biases, n);
-    layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
-    layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
-
-    layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
-    layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
-    layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
-    #endif
-    layer->activation = activation;
-
-    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
-
-    return layer;
 }
 
-void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
+void binarize_input(float *input, int n, int size, float *binary)
 {
-    layer->h = h;
-    layer->w = w;
-    layer->c = c;
-    int out_h = convolutional_out_height(*layer);
-    int out_w = convolutional_out_width(*layer);
-
-    layer->col_image = realloc(layer->col_image,
-                                out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
-    layer->output = realloc(layer->output,
-                                layer->batch*out_h * out_w * layer->n*sizeof(float));
-    layer->delta  = realloc(layer->delta,
-                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+    int i, s;
+    for(s = 0; s < size; ++s){
+        float mean = 0;
+        for(i = 0; i < n; ++i){
+            mean += fabs(input[i*size + s]);
+        }
+        mean = mean / n;
+        for(i = 0; i < n; ++i){
+            binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
+        }
+    }
 }
 
-void bias_output(const convolutional_layer layer)
+int convolutional_out_height(convolutional_layer l)
+{
+    return (l.h + 2*l.pad - l.size) / l.stride + 1;
+}
+
+int convolutional_out_width(convolutional_layer l)
+{
+    return (l.w + 2*l.pad - l.size) / l.stride + 1;
+}
+
+image get_convolutional_image(convolutional_layer l)
+{
+    int h,w,c;
+    h = convolutional_out_height(l);
+    w = convolutional_out_width(l);
+    c = l.n;
+    return float_to_image(w,h,c,l.output);
+}
+
+image get_convolutional_delta(convolutional_layer l)
+{
+    int h,w,c;
+    h = convolutional_out_height(l);
+    w = convolutional_out_width(l);
+    c = l.n;
+    return float_to_image(w,h,c,l.delta);
+}
+
+size_t get_workspace_size(layer l){
+#ifdef CUDNN
+    if(gpu_index >= 0){
+        size_t most = 0;
+        size_t s = 0;
+        cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
+                l.srcTensorDesc,
+                l.weightDesc,
+                l.convDesc,
+                l.dstTensorDesc,
+                l.fw_algo,
+                &s);
+        if (s > most) most = s;
+        cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
+                l.srcTensorDesc,
+                l.ddstTensorDesc,
+                l.convDesc,
+                l.dweightDesc,
+                l.bf_algo,
+                &s);
+        if (s > most) most = s;
+        cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
+                l.weightDesc,
+                l.ddstTensorDesc,
+                l.convDesc,
+                l.dsrcTensorDesc,
+                l.bd_algo,
+                &s);
+        if (s > most) most = s;
+        return most;
+    }
+    #endif
+    return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
+}
+
+#ifdef GPU
+#ifdef CUDNN
+void cudnn_convolutional_setup(layer *l, int cudnn_preference)
+{
+
+#ifdef CUDNN_HALF
+	// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0):
+	// Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
+	const cudnnDataType_t data_type = CUDNN_DATA_HALF;
+#else
+	cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
+#endif
+	// Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
+	cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH);
+
+	// INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported 
+	// on architectures with DP4A support (compute capability 6.1 and later).
+	//cudnnDataType_t data_type = CUDNN_DATA_INT8;
+
+    cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
+    cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
+    cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+
+    cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
+    cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
+    cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+#if(CUDNN_MAJOR >= 6)
+	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, data_type);	// cudnn >= 6.0
+#else
+	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);	// cudnn 5.1
+#endif
+	int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST;
+	int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST;
+	int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST;
+	if (cudnn_preference == cudnn_smallest) 
+	{
+		forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE;
+		backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE;
+		backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE;
+	}
+
+	cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
+            l->srcTensorDesc,
+            l->weightDesc,
+            l->convDesc,
+            l->dstTensorDesc,
+			forward_algo,
+            0,
+            &l->fw_algo);
+    cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
+            l->weightDesc,
+            l->ddstTensorDesc,
+            l->convDesc,
+            l->dsrcTensorDesc,
+			backward_algo,
+            0,
+            &l->bd_algo);
+    cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
+            l->srcTensorDesc,
+            l->ddstTensorDesc,
+            l->convDesc,
+            l->dweightDesc,
+			backward_filter,
+            0,
+            &l->bf_algo);
+}
+#endif
+#endif
+
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam)
+{
+    int i;
+    convolutional_layer l = {0};
+    l.type = CONVOLUTIONAL;
+
+    l.h = h;
+    l.w = w;
+    l.c = c;
+    l.n = n;
+    l.binary = binary;
+    l.xnor = xnor;
+    l.batch = batch;
+    l.stride = stride;
+    l.size = size;
+    l.pad = padding;
+    l.batch_normalize = batch_normalize;
+
+    l.weights = calloc(c*n*size*size, sizeof(float));
+    l.weight_updates = calloc(c*n*size*size, sizeof(float));
+
+    l.biases = calloc(n, sizeof(float));
+    l.bias_updates = calloc(n, sizeof(float));
+
+    // float scale = 1./sqrt(size*size*c);
+    float scale = sqrt(2./(size*size*c));
+    for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1);
+    int out_h = convolutional_out_height(l);
+    int out_w = convolutional_out_width(l);
+    l.out_h = out_h;
+    l.out_w = out_w;
+    l.out_c = n;
+    l.outputs = l.out_h * l.out_w * l.out_c;
+    l.inputs = l.w * l.h * l.c;
+
+    l.output = calloc(l.batch*l.outputs, sizeof(float));
+    l.delta  = calloc(l.batch*l.outputs, sizeof(float));
+
+    l.forward = forward_convolutional_layer;
+    l.backward = backward_convolutional_layer;
+    l.update = update_convolutional_layer;
+    if(binary){
+        l.binary_weights = calloc(c*n*size*size, sizeof(float));
+        l.cweights = calloc(c*n*size*size, sizeof(char));
+        l.scales = calloc(n, sizeof(float));
+    }
+    if(xnor){
+        l.binary_weights = calloc(c*n*size*size, sizeof(float));
+        l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
+    }
+
+    if(batch_normalize){
+        l.scales = calloc(n, sizeof(float));
+        l.scale_updates = calloc(n, sizeof(float));
+        for(i = 0; i < n; ++i){
+            l.scales[i] = 1;
+        }
+
+        l.mean = calloc(n, sizeof(float));
+        l.variance = calloc(n, sizeof(float));
+
+        l.mean_delta = calloc(n, sizeof(float));
+        l.variance_delta = calloc(n, sizeof(float));
+
+        l.rolling_mean = calloc(n, sizeof(float));
+        l.rolling_variance = calloc(n, sizeof(float));
+        l.x = calloc(l.batch*l.outputs, sizeof(float));
+        l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
+    }
+    if(adam){
+        l.adam = 1;
+        l.m = calloc(c*n*size*size, sizeof(float));
+        l.v = calloc(c*n*size*size, sizeof(float));
+    }
+
+#ifdef GPU
+    l.forward_gpu = forward_convolutional_layer_gpu;
+    l.backward_gpu = backward_convolutional_layer_gpu;
+    l.update_gpu = update_convolutional_layer_gpu;
+
+    if(gpu_index >= 0){
+        if (adam) {
+            l.m_gpu = cuda_make_array(l.m, c*n*size*size);
+            l.v_gpu = cuda_make_array(l.v, c*n*size*size);
+        }
+
+        l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
+#ifdef CUDNN_HALF
+		l.weights_gpu16 = cuda_make_array(l.weights, c*n*size*size/2);
+#endif
+        l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
+
+        l.biases_gpu = cuda_make_array(l.biases, n);
+        l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
+
+        l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
+        l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+
+        if(binary){
+            l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size);
+        }
+        if(xnor){
+            l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size);
+            l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
+        }
+
+        if(batch_normalize){
+            l.mean_gpu = cuda_make_array(l.mean, n);
+            l.variance_gpu = cuda_make_array(l.variance, n);
+
+            l.rolling_mean_gpu = cuda_make_array(l.mean, n);
+            l.rolling_variance_gpu = cuda_make_array(l.variance, n);
+
+            l.mean_delta_gpu = cuda_make_array(l.mean, n);
+            l.variance_delta_gpu = cuda_make_array(l.variance, n);
+
+            l.scales_gpu = cuda_make_array(l.scales, n);
+            l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
+
+            l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+            l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+        }
+#ifdef CUDNN
+        cudnnCreateTensorDescriptor(&l.srcTensorDesc);
+        cudnnCreateTensorDescriptor(&l.dstTensorDesc);
+        cudnnCreateFilterDescriptor(&l.weightDesc);
+        cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
+        cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
+        cudnnCreateFilterDescriptor(&l.dweightDesc);
+        cudnnCreateConvolutionDescriptor(&l.convDesc);
+        cudnn_convolutional_setup(&l, cudnn_fastest);
+#endif
+    }
+#endif
+    l.workspace_size = get_workspace_size(l);
+    l.activation = activation;
+
+    fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
+
+    return l;
+}
+
+void denormalize_convolutional_layer(convolutional_layer l)
+{
+    int i, j;
+    for(i = 0; i < l.n; ++i){
+        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
+        for(j = 0; j < l.c*l.size*l.size; ++j){
+            l.weights[i*l.c*l.size*l.size + j] *= scale;
+        }
+        l.biases[i] -= l.rolling_mean[i] * scale;
+        l.scales[i] = 1;
+        l.rolling_mean[i] = 0;
+        l.rolling_variance[i] = 1;
+    }
+}
+
+void test_convolutional_layer()
+{
+    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0);
+    l.batch_normalize = 1;
+    float data[] = {1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3};
+    network_state state = {0};
+    state.input = data;
+    forward_convolutional_layer(l, state);
+}
+
+void resize_convolutional_layer(convolutional_layer *l, int w, int h)
+{
+	int old_w = l->w;
+	int old_h = l->h;
+    l->w = w;
+    l->h = h;
+    int out_w = convolutional_out_width(*l);
+    int out_h = convolutional_out_height(*l);
+
+    l->out_w = out_w;
+    l->out_h = out_h;
+
+    l->outputs = l->out_h * l->out_w * l->out_c;
+    l->inputs = l->w * l->h * l->c;
+
+    l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
+    l->delta  = realloc(l->delta,  l->batch*l->outputs*sizeof(float));
+    if(l->batch_normalize){
+        l->x = realloc(l->x, l->batch*l->outputs*sizeof(float));
+        l->x_norm  = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
+    }
+
+#ifdef GPU
+	if (old_w < w || old_h < h) {
+		cuda_free(l->delta_gpu);
+		cuda_free(l->output_gpu);
+
+		l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
+		l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+
+		if (l->batch_normalize) {
+			cuda_free(l->x_gpu);
+			cuda_free(l->x_norm_gpu);
+
+			l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+			l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+		}
+	}
+#ifdef CUDNN
+    cudnn_convolutional_setup(l, cudnn_fastest);
+#endif
+#endif
+    l->workspace_size = get_workspace_size(*l);
+
+#ifdef CUDNN
+	// check for excessive memory consumption 
+	size_t free_byte;
+	size_t total_byte;
+	check_error(cudaMemGetInfo(&free_byte, &total_byte));
+	if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
+		printf(" used slow CUDNN algo without Workspace! \n");
+		cudnn_convolutional_setup(l, cudnn_smallest);
+		l->workspace_size = get_workspace_size(*l);
+	}
+#endif
+}
+
+void add_bias(float *output, float *biases, int batch, int n, int size)
 {
     int i,j,b;
-    int out_h = convolutional_out_height(layer);
-    int out_w = convolutional_out_width(layer);
-    for(b = 0; b < layer.batch; ++b){
-        for(i = 0; i < layer.n; ++i){
-            for(j = 0; j < out_h*out_w; ++j){
-                layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] += biases[i];
             }
         }
     }
 }
 
-void forward_convolutional_layer(const convolutional_layer layer, float *in)
+void scale_bias(float *output, float *scales, int batch, int n, int size)
 {
-    int out_h = convolutional_out_height(layer);
-    int out_w = convolutional_out_width(layer);
-    int i;
-
-    bias_output(layer);
-
-    int m = layer.n;
-    int k = layer.size*layer.size*layer.c;
-    int n = out_h*out_w;
-
-    float *a = layer.filters;
-    float *b = layer.col_image;
-    float *c = layer.output;
-
-
-    for(i = 0; i < layer.batch; ++i){
-        im2col_cpu(in, layer.c, layer.h, layer.w, 
-            layer.size, layer.stride, layer.pad, b);
-        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-        c += n*m;
-        in += layer.c*layer.h*layer.w;
-    }
-    activate_array(layer.output, m*n*layer.batch, layer.activation);
-}
-
-void learn_bias_convolutional_layer(convolutional_layer layer)
-{
-    int i,b;
-    int size = convolutional_out_height(layer)
-        *convolutional_out_width(layer);
-    for(b = 0; b < layer.batch; ++b){
-        for(i = 0; i < layer.n; ++i){
-            layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size);
+    int i,j,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] *= scales[i];
+            }
         }
     }
 }
 
-void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta)
+void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
+{
+    int i,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            bias_updates[i] += sum_array(delta+size*(i+b*n), size);
+        }
+    }
+}
+
+void forward_convolutional_layer(convolutional_layer l, network_state state)
+{
+    int out_h = convolutional_out_height(l);
+    int out_w = convolutional_out_width(l);
+    int i;
+
+    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
+
+    if(l.xnor){
+        binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
+        swap_binary(&l);
+        binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input);
+        state.input = l.binary_input;
+    }
+
+    int m = l.n;
+    int k = l.size*l.size*l.c;
+    int n = out_h*out_w;
+
+
+    float *a = l.weights;
+    float *b = state.workspace;
+    float *c = l.output;
+
+    for(i = 0; i < l.batch; ++i){
+        im2col_cpu(state.input, l.c, l.h, l.w, 
+                l.size, l.stride, l.pad, b);
+        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+        c += n*m;
+        state.input += l.c*l.h*l.w;
+    }
+
+    if(l.batch_normalize){
+        forward_batchnorm_layer(l, state);
+    }
+    add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
+
+    activate_array(l.output, m*n*l.batch, l.activation);
+    if(l.binary || l.xnor) swap_binary(&l);
+}
+
+void backward_convolutional_layer(convolutional_layer l, network_state state)
 {
     int i;
-    int m = layer.n;
-    int n = layer.size*layer.size*layer.c;
-    int k = convolutional_out_height(layer)*
-        convolutional_out_width(layer);
-    gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
-    learn_bias_convolutional_layer(layer);
+    int m = l.n;
+    int n = l.size*l.size*l.c;
+    int k = convolutional_out_height(l)*
+        convolutional_out_width(l);
 
-    if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+    gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
+    backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
 
-    for(i = 0; i < layer.batch; ++i){
-        float *a = layer.delta + i*m*k;
-        float *b = layer.col_image;
-        float *c = layer.filter_updates;
+    if(l.batch_normalize){
+        backward_batchnorm_layer(l, state);
+    }
 
-        float *im = in+i*layer.c*layer.h*layer.w;
+    for(i = 0; i < l.batch; ++i){
+        float *a = l.delta + i*m*k;
+        float *b = state.workspace;
+        float *c = l.weight_updates;
 
-        im2col_cpu(im, layer.c, layer.h, layer.w, 
-                layer.size, layer.stride, layer.pad, b);
+        float *im = state.input+i*l.c*l.h*l.w;
+
+        im2col_cpu(im, l.c, l.h, l.w, 
+                l.size, l.stride, l.pad, b);
         gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
 
-        if(delta){
-            a = layer.filters;
-            b = layer.delta + i*m*k;
-            c = layer.col_image;
+        if(state.delta){
+            a = l.weights;
+            b = l.delta + i*m*k;
+            c = state.workspace;
 
             gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
 
-            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w);
+            col2im_cpu(state.workspace, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
         }
     }
 }
 
-void update_convolutional_layer(convolutional_layer layer)
+void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay)
 {
-    int size = layer.size*layer.size*layer.c*layer.n;
-    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
-    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
+    int size = l.size*l.size*l.c*l.n;
+    axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
+    scal_cpu(l.n, momentum, l.bias_updates, 1);
 
-    scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
-    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
-    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
+    if(l.scales){
+        axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
+        scal_cpu(l.n, momentum, l.scale_updates, 1);
+    }
+
+    axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1);
+    axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
+    scal_cpu(size, momentum, l.weight_updates, 1);
 }
 
 
-image get_convolutional_filter(convolutional_layer layer, int i)
+image get_convolutional_weight(convolutional_layer l, int i)
 {
-    int h = layer.size;
-    int w = layer.size;
-    int c = layer.c;
-    return float_to_image(h,w,c,layer.filters+i*h*w*c);
+    int h = l.size;
+    int w = l.size;
+    int c = l.c;
+    return float_to_image(w,h,c,l.weights+i*h*w*c);
 }
 
-image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
+void rgbgr_weights(convolutional_layer l)
 {
-    image *filters = calloc(layer.n, sizeof(image));
-    int i,j,k,c;
-    if(!prev_filters){
-        for(i = 0; i < layer.n; ++i){
-            filters[i] = copy_image(get_convolutional_filter(layer, i));
+    int i;
+    for(i = 0; i < l.n; ++i){
+        image im = get_convolutional_weight(l, i);
+        if (im.c == 3) {
+            rgbgr_image(im);
         }
     }
-    else{
-        image base = prev_filters[0];
-        for(i = 0; i < layer.n; ++i){
-            image filter = get_convolutional_filter(layer, i);
-            filters[i] = make_image(base.h, base.w, base.c);
-            for(j = 0; j < layer.size; ++j){
-                for(k = 0; k < layer.size; ++k){
-                    for(c = 0; c < layer.c; ++c){
-                        float weight = get_pixel(filter, j, k, c);
-                        image prev_filter = copy_image(prev_filters[c]);
-                        scale_image(prev_filter, weight);
-                        add_into_image(prev_filter, filters[i], 0,0);
-                        free_image(prev_filter);
-                    }
-                }
-            }
-        }
-    }
-    return filters;
 }
 
-image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
+void rescale_weights(convolutional_layer l, float scale, float trans)
 {
-    image *single_filters = weighted_sum_filters(layer, 0);
-    show_images(single_filters, layer.n, window);
+    int i;
+    for(i = 0; i < l.n; ++i){
+        image im = get_convolutional_weight(l, i);
+        if (im.c == 3) {
+            scale_image(im, scale);
+            float sum = sum_array(im.data, im.w*im.h*im.c);
+            l.biases[i] += sum*trans;
+        }
+    }
+}
 
-    image delta = get_convolutional_image(layer);
+image *get_weights(convolutional_layer l)
+{
+    image *weights = calloc(l.n, sizeof(image));
+    int i;
+    for(i = 0; i < l.n; ++i){
+        weights[i] = copy_image(get_convolutional_weight(l, i));
+        //normalize_image(weights[i]);
+    }
+    return weights;
+}
+
+image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights)
+{
+    image *single_weights = get_weights(l);
+    show_images(single_weights, l.n, window);
+
+    image delta = get_convolutional_image(l);
     image dc = collapse_image_layers(delta, 1);
     char buff[256];
     sprintf(buff, "%s: Output", window);
     //show_image(dc, buff);
     //save_image(dc, buff);
     free_image(dc);
-    return single_filters;
+    return single_weights;
 }
 
-#ifdef GPU
-
-cl_kernel get_convolutional_learn_bias_kernel()
-{
-    static int init = 0;
-    static cl_kernel kernel;
-    if(!init){
-        kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0);
-        init = 1;
-    }
-    return kernel;
-}
-
-void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
-{
-    int size = convolutional_out_height(layer) * convolutional_out_width(layer);
-
-    cl_setup();
-    cl_kernel kernel = get_convolutional_learn_bias_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
-    check_error(cl);
-
-    const size_t global_size[] = {layer.n};
-
-    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
-    check_error(cl);
-}
-
-cl_kernel get_convolutional_bias_kernel()
-{
-    static int init = 0;
-    static cl_kernel kernel;
-    if(!init){
-        kernel = get_kernel("src/convolutional_layer.cl", "bias", 0);
-        init = 1;
-    }
-    return kernel;
-}
-
-void bias_output_gpu(const convolutional_layer layer)
-{
-    int out_h = convolutional_out_height(layer);
-    int out_w = convolutional_out_width(layer);
-    int size = out_h*out_w;
-
-    cl_setup();
-    cl_kernel kernel = get_convolutional_bias_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
-    check_error(cl);
-
-    const size_t global_size[] = {layer.n*size, layer.batch};
-
-    cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
-    check_error(cl);
-}
-
-//#define TIMEIT
-
-void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
-{
-    int i;
-    int m = layer.n;
-    int k = layer.size*layer.size*layer.c;
-    int n = convolutional_out_height(layer)*
-        convolutional_out_width(layer);
-
-    bias_output_gpu(layer);
-
-    for(i = 0; i < layer.batch; ++i){
-        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
-        cl_mem a = layer.filters_cl;
-        cl_mem b = layer.col_image_cl;
-        cl_mem c = layer.output_cl;
-        gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,0,n,1.,c,i*m*n,n);
-    }
-    activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
-}
-
-void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in, cl_mem delta_cl)
-{
-    int i;
-    int m = layer.n;
-    int n = layer.size*layer.size*layer.c;
-    int k = convolutional_out_height(layer)*
-        convolutional_out_width(layer);
-    gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
-    learn_bias_convolutional_layer_ongpu(layer);
-
-    if(delta_cl) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_cl, 1);
-
-    for(i = 0; i < layer.batch; ++i){
-        cl_mem a = layer.delta_cl;
-        cl_mem b = layer.col_image_cl;
-        cl_mem c = layer.filter_updates_cl;
-
-        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
-        gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,0,k,1,c,0,n);
-
-        if(delta_cl){
-
-            cl_mem a = layer.filters_cl;
-            cl_mem b = layer.delta_cl;
-            cl_mem c = layer.col_image_cl;
-
-            gemm_ongpu_offset(1,0,n,k,m,1,a,0,n,b,i*k*m,k,0,c,0,k);
-
-            col2im_ongpu(layer.col_image_cl, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_cl);
-        }
-    }
-}
-
-void pull_convolutional_layer(convolutional_layer layer)
-{
-    cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
-    cl_read_array(layer.biases_cl, layer.biases, layer.n);
-}
-
-void push_convolutional_layer(convolutional_layer layer)
-{
-    cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
-    cl_write_array(layer.biases_cl, layer.biases, layer.n);
-}
-
-void update_convolutional_layer_gpu(convolutional_layer layer)
-{
-    int size = layer.size*layer.size*layer.c*layer.n;
-    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
-    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
-
-    scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
-    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
-    scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
-    pull_convolutional_layer(layer);
-}
-
-
-#endif
-

--
Gitblit v1.10.0