From e0976bcb30fa50e6e33c701fc057a4e93935bccf Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sat, 13 Oct 2018 06:17:09 +0000
Subject: [PATCH] Update README

---
 opencv_dnn.py |  592 +++++++++++++++++++++++++++++++++++++----------------------
 1 files changed, 372 insertions(+), 220 deletions(-)

diff --git a/opencv_dnn.py b/opencv_dnn.py
index 8595505..624aea8 100644
--- a/opencv_dnn.py
+++ b/opencv_dnn.py
@@ -1,46 +1,91 @@
+import ast
+import collections
 import cv2
-import numpy as np
-import pandas as pd
 import imagehash as ih
+import numpy as np
+from operator import itemgetter
 import os
-import sys
-import math
-import random
+import pandas as pd
 from PIL import Image
-from .. import fetch_data
-from .. import transform_data
+import time
 
-card_width = 315
-card_height = 440
-
-df = fetch_data.load_all_cards_text('%s/csv/rsv.csv' % transform_data.data_dir)
-df['art_hash'] = np.NaN
-for _, card_info in card_pool.iterrows():
-    img_name = '%s/card_img/png/%s/%s_%s.png' % (data_dir, card_info['set'], card_info['collector_number'],
-                                                 fetch_data.get_valid_filename(card_info['name']))
-    card_img = cv2.imread(img_name)
-    if card_img is None:
-        fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (data_dir, card_info['set']))
-        card_img = cv2.imread(img_name)
-    if card_img is None:
-        print('WARNING: card %s is not found!' % img_name)
-    img_art = Image.fromarray(card_img[121:580, 63:685])
-    card_info['art_hash'] = ih.phash(img_card, hash_size=32, highfreq_factor=4)
-
-print(df['art_hash'])
+import fetch_data
+import transform_data
 
 
+def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4):
+    """
+    Calculate perceptual hash (pHash) value for each cards in the database, then store them if needed
+    :param card_pool: pandas dataframe containing all card information
+    :param save_to: path for the pickle file to be saved
+    :param hash_size: param for pHash algorithm
+    :param highfreq_factor: param for pHash algorithm
+    :return: pandas dataframe
+    """
+    # Since some double-faced cards may result in two different cards, create a new dataframe to store the result
+    new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
+    new_pool['card_hash'] = np.NaN
+    #new_pool['art_hash'] = np.NaN
+    for ind, card_info in card_pool.iterrows():
+        if ind % 100 == 0:
+            print('Calculating hashes: %dth card' % ind)
 
-# Disclaimer: majority of the basic framework in this file is modified from the following tutorial:
-# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
+        card_names = []
+        # Double-faced cards have a different json format than normal cards
+        if card_info['layout'] in ['transform', 'double_faced_token']:
+            if isinstance(card_info['card_faces'], str):
+                card_faces = ast.literal_eval(card_info['card_faces'])
+            else:
+                card_faces = card_info['card_faces']
+            for i in range(len(card_faces)):
+                card_names.append(card_faces[i]['name'])
+        else:  # if card_info['layout'] == 'normal':
+            card_names.append(card_info['name'])
+
+        for card_name in card_names:
+            # Fetch the image - name can be found based on the card's information
+            card_info['name'] = card_name
+            img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
+                                                         card_info['collector_number'],
+                                                         fetch_data.get_valid_filename(card_info['name']))
+            card_img = cv2.imread(img_name)
+
+            # If the image doesn't exist, download it from the URL
+            if card_img is None:
+                fetch_data.fetch_card_image(card_info,
+                                            out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set']))
+                card_img = cv2.imread(img_name)
+            if card_img is None:
+                print('WARNING: card %s is not found!' % img_name)
+
+            # Compute value of the card's perceptual hash, then store it to the database
+            '''
+            img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
+            art_hash = ih.phash(img_art, hash_size=hash_size, highfreq_factor=highfreq_factor)
+            card_info['art_hash'] = art_hash
+            '''
+            img_card = Image.fromarray(card_img)
+            card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor)
+            card_info['card_hash'] = card_hash
+            new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info
+
+    # Remove uselesss fields, then pickle it if needed
+    new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
+                         'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
+                         'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
+    if save_to is not None:
+        new_pool.to_pickle(save_to)
+    return new_pool
 
 
 # www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
 def order_points(pts):
-    # initialzie a list of coordinates that will be ordered
-    # such that the first entry in the list is the top-left,
-    # the second entry is the top-right, the third is the
-    # bottom-right, and the fourth is the bottom-left
+    """
+    initialzie a list of coordinates that will be ordered such that the first entry in the list is the top-left,
+    the second entry is the top-right, the third is the bottom-right, and the fourth is the bottom-left
+    :param pts: array containing 4 points
+    :return: ordered list of 4 points
+    """
     rect = np.zeros((4, 2), dtype="float32")
 
     # the top-left point will have the smallest sum, whereas
@@ -61,6 +106,13 @@
 
 
 def four_point_transform(image, pts):
+    """
+    Transform a quadrilateral section of an image into a rectangular area
+    From: www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
+    :param image: source image
+    :param pts: 4 corners of the quadrilateral
+    :return: rectangular image of the specified area
+    """
     # obtain a consistent order of the points and unpack them
     # individually
     rect = order_points(pts)
@@ -92,19 +144,24 @@
         [0, maxHeight - 1]], dtype="float32")
 
     # compute the perspective transform matrix and then apply it
-    M = cv2.getPerspectiveTransform(rect, dst)
-    warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
+    mat = cv2.getPerspectiveTransform(rect, dst)
+    warped = cv2.warpPerspective(image, mat, (maxWidth, maxHeight))
 
     # If the image is horizontally long, rotate it by 90
     if maxWidth > maxHeight:
         center = (maxHeight / 2, maxHeight / 2)
-        M_rot = cv2.getRotationMatrix2D(center, 270, 1.0)
-        warped = cv2.warpAffine(warped, M_rot, (maxHeight, maxWidth))
+        mat_rot = cv2.getRotationMatrix2D(center, 270, 1.0)
+        warped = cv2.warpAffine(warped, mat_rot, (maxHeight, maxWidth))
 
     # return the warped image
     return warped
 
 
+'''
+# The following functions are only used in conjunction with YOLO, and is deprecated:
+# - get_outputs_names()
+# - post_process()
+# - draw_pred() 
 # Get the names of the output layers
 def get_outputs_names(net):
     # Get the names of all the layers in the network
@@ -114,11 +171,11 @@
 
 
 # Remove the bounding boxes with low confidence using non-maxima suppression
+# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
 def post_process(frame, outs, thresh_conf, thresh_nms):
     frame_height = frame.shape[0]
     frame_width = frame.shape[1]
 
-
     # Scan through all the bounding boxes output from the network and keep only the
     # ones with high confidence scores. Assign the box's class label as the class with the highest score.
     class_ids = []
@@ -163,13 +220,17 @@
     label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
     top = max(top, label_size[1])
     cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
+'''
 
 
 def remove_glare(img):
     """
+    Reduce the effect of glaring in the image
     Inspired from:
     http://www.amphident.de/en/blog/preprocessing-for-automatic-pattern-identification-in-wildlife-removing-glare.html
     The idea is to find area that has low saturation but high value, which is what a glare usually look like.
+    :param img: source image
+    :return: corrected image with glaring smoothened out
     """
     img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
     _, s, v = cv2.split(img_hsv)
@@ -192,7 +253,15 @@
     return corrected
 
 
-def find_card(img, thresh_c=5, kernel_size=(3, 3), size_ratio=0.15):
+def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000):
+    """
+    Find contours of all cards in the image
+    :param img: source image
+    :param thresh_c: value of the constant C for adaptive thresholding
+    :param kernel_size: dimension of the kernel used for dilation and erosion
+    :param size_thresh: threshold for size (in pixel) of the contour to be a candidate
+    :return: list of candidate contours
+    """
     # Typical pre-processing - grayscale, blurring, thresholding
     img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
     img_blur = cv2.medianBlur(img_gray, 5)
@@ -204,226 +273,309 @@
     img_erode = cv2.erode(img_dilate, kernel, iterations=1)
 
     # Find the contour
-    #img_contour = img_erode.copy()
     _, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
     if len(cnts) == 0:
         print('no contours')
         return []
-    #img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
-    #img_contour = cv2.drawContours(img_contour, cnts, -1, (0, 255, 0), 1)
-    #cv2.imshow('test', img_contour)
 
-    # For each contours detected, check if they are large enough and are rectangle
+    # The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child
+    # their previous and next node
+    # Using recursive search, find the uppermost contour in the hierarchy that satisfies the condition
+    # The candidate contour must be rectangle (has 4 points) and should be larger than a threshold
     cnts_rect = []
-    ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True)
-    for i in range(len(cnts)):
-        size = cv2.contourArea(cnts[ind_sort[i]])
-        peri = cv2.arcLength(cnts[ind_sort[i]], True)
-        approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True)
-        if size > img.shape[0] * img.shape[1] * size_ratio and len(approx) == 4:
+    stack = [(0, hier[0][0])]
+    while len(stack) > 0:
+        i_cnt, h = stack.pop()
+        i_next, i_prev, i_child, i_parent = h
+        if i_next != -1:
+            stack.append((i_next, hier[0][i_next]))
+        cnt = cnts[i_cnt]
+        size = cv2.contourArea(cnt)
+        peri = cv2.arcLength(cnt, True)
+        approx = cv2.approxPolyDP(cnt, 0.04 * peri, True)
+        if size >= size_thresh and len(approx) == 4:
             cnts_rect.append(approx)
-
+        else:
+            if i_child != -1:
+                stack.append((i_child, hier[0][i_child]))
     return cnts_rect
 
-    '''
-    #card_dim = [630, 880]
-    #for cnt in cnts_rect:
-    #    pts = np.float32([p[0] for p in cnt])
-    #    img_warp = four_point_transform(img, pts)
-        
-        # Check which side is longer
-        len_1 = math.sqrt((cnt[0][0][0] - cnt[1][0][0]) ** 2 + (cnt[0][0][1] - cnt[1][0][1]) ** 2)
-        len_2 = math.sqrt((cnt[0][0][0] - cnt[-1][0][0]) ** 2 + (cnt[0][0][1] - cnt[-1][0][1]) ** 2)
-        #print(len_1, len_2)
 
-        orig_corner = np.array([p[0] for p in cnt], dtype=np.float32)
-        if len_1 > len_2:
-            new_corner = np.array([[0, 0], [0, card_dim[1]], [card_dim[0], card_dim[1]], [card_dim[0], 0]], dtype=np.float32)
+def draw_card_graph(exist_cards, card_pool, f_len):
+    """
+    Given the history of detected cards in the current and several previous frames, draw a simple graph
+    displaying the detected cards with its confidence level
+    :param exist_cards: History of all detected cards in the previous (f_len) frames
+    :param card_pool: pandas dataframe of all card's information
+    :param f_len: length of windows (in frames) to consider for confidence level
+    :return:
+    """
+    # Lots of constants to set the dimension of each elements
+    w_card = 63  # Width of the card image displayed
+    h_card = 88
+    gap = 25  # Offset between each elements
+    gap_sm = 10  # Small offset
+    w_bar = 300  # Length of the confidence bar at 100%
+    h_bar = 12
+    txt_scale = 0.8
+    n_cards_p_col = 4  # Number of cards displayed per one column
+    w_img = gap + (w_card + gap + w_bar + gap) * 2  # Dimension of the entire graph (for 2 columns)
+    h_img = 480
+    img_graph = np.zeros((h_img, w_img, 3), dtype=np.uint8)
+    x_anchor = gap
+    y_anchor = gap
+
+    i = 0
+
+    # Cards are displayed from the most confident to the least
+    # Confidence level is calculated by number of frames that the card was detected in
+    for key, val in sorted(exist_cards.items(), key=itemgetter(1), reverse=True)[:n_cards_p_col * 2]:
+        card_name = key[:key.find('(') - 1]
+        card_set = key[key.find('(') + 1:key.find(')')]
+        confidence = sum(val) / f_len
+        card_info = card_pool[(card_pool['name'] == card_name) & (card_pool['set'] == card_set)].iloc[0]
+        img_name = '%s/card_img/tiny/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
+                                                      card_info['collector_number'],
+                                                      fetch_data.get_valid_filename(card_info['name']))
+        # If the card image is not found, just leave it blank
+        if os.path.exists(img_name):
+            card_img = cv2.imread(img_name)
         else:
-            new_corner = np.array([[0, 0], [card_dim[0], 0], [card_dim[0], card_dim[1]], [0, card_dim[1]]],
-                                  dtype=np.float32)
+            card_img = np.ones((h_card, w_card))
 
-        M = cv2.getPerspectiveTransform(orig_corner, new_corner)
-        img_warp = cv2.warpPerspective(img, M, (card_dim[0], card_dim[1]))
-        
-        #cv2.imshow('warp', img_warp)
-        #cv2.waitKey(0)
-    #img_contour = cv2.drawContours(img_contour, cnts_rect, -1, (0, 255, 0), 3)
-    #img_thresh = cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2BGR)
-    #img_erode = cv2.cvtColor(img_erode, cv2.COLOR_GRAY2BGR)
-    #img_dilate = cv2.cvtColor(img_dilate, cv2.COLOR_GRAY2BGR)
-    #return img_thresh, img_erode, img_contour
-    '''
+        # Insert the card image, card name, and confidence bar to the graph
+        img_graph[y_anchor:y_anchor + h_card, x_anchor:x_anchor + w_card] = card_img
+        cv2.putText(img_graph, '%s (%s)' % (card_name, card_set),
+                    (x_anchor + w_card + gap, y_anchor + gap_sm + int(txt_scale * 25)), cv2.FONT_HERSHEY_SIMPLEX,
+                    txt_scale, (255, 255, 255), 1)
+        cv2.rectangle(img_graph, (x_anchor + w_card + gap, y_anchor + h_card - (gap_sm + h_bar)),
+                      (x_anchor + w_card + gap + int(w_bar * confidence), y_anchor + h_card - gap_sm), (0, 255, 0),
+                      thickness=cv2.FILLED)
+        y_anchor += h_card + gap
+        i += 1
+        if i % n_cards_p_col == 0:
+            x_anchor += w_card + gap + w_bar + gap
+            y_anchor = gap
+        pass
+    return img_graph
 
-def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
-    img_copy = img.copy()
-    # Create a 4D blob from a frame.
-    blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False)
 
-    # Sets the input to the network
-    net.setInput(blob)
+def detect_frame(img, card_pool, hash_size=32, highfreq_factor=4, size_thresh=10000,
+                 out_path=None, display=True, debug=False):
+    """
+    Identify all cards in the input frame, display or save the frame if needed
+    :param img: input frame
+    :param card_pool: pandas dataframe of all card's information
+    :param hash_size: param for pHash algorithm
+    :param highfreq_factor: param for pHash algorithm
+    :param size_thresh: threshold for size (in pixel) of the contour to be a candidate
+    :param out_path: path to save the result
+    :param display: flag for displaying the result
+    :param debug: flag for debug mode
+    :return: list of detected card's name/set and resulting image
+    """
 
-    # Runs the forward pass to get output of the output layers
-    outs = net.forward(get_outputs_names(net))
+    img_result = img.copy()  # For displaying and saving
+    det_cards = []
+    # Detect contours of all cards in the image
+    cnts = find_card(img_result, size_thresh=size_thresh)
+    for i in range(len(cnts)):
+        cnt = cnts[i]
+        # For the region of the image covered by the contour, transform them into a rectangular image
+        pts = np.float32([p[0] for p in cnt])
+        img_warp = four_point_transform(img, pts)
 
-    # Remove the bounding boxes with low confidence
-    obj_list = post_process(img, outs, thresh_conf, thresh_nms)
-    for obj in obj_list:
-        class_id, confidence, box = obj
-        left, top, width, height = box
-        draw_pred(img, class_id, classes, confidence, left, top, left + width, top + height)
+        # To identify the card from the card image, perceptual hashing (pHash) algorithm is used
+        # Perceptual hash is a hash string built from features of the input medium. If two media are similar
+        # (ie. has similar features), their resulting pHash value will be very close.
+        # Using this property, the matching card for the given card image can be found by comparing pHash of
+        # all cards in the database, then finding the card that results in the minimal difference in pHash value.
+        '''
+        img_art = img_warp[47:249, 22:294]
+        img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
+        art_hash = ih.phash(img_art, hash_size=hash_size, highfreq_factor=highfreq_factor).hash.flatten()
+        card_pool['hash_diff'] = card_pool['art_hash'].apply(lambda x: np.count_nonzero(x != art_hash))
+        '''
+        img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
+        # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time
+        card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor).hash.flatten()
+        card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash))
+        min_card = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])].iloc[0]
+        card_name = min_card['name']
+        card_set = min_card['set']
+        det_cards.append((card_name, card_set))
+        hash_diff = min_card['hash_diff']
 
-    # Put efficiency information. The function getPerfProfile returns the
-    # overall time for inference(t) and the timings for each of the layers(in layersTimes)
-    t, _ = net.getPerfProfile()
-    label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
-    cv2.putText(img, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
-
-    if out_path is not None:
-        cv2.imwrite(out_path, img.astype(np.uint8))
+        # Render the result, and display them if needed
+        cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2)
+        cv2.putText(img_result, card_name, (pts[0][0], pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
+        if debug:
+            # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
+            cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
+                        cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
+            cv2.imshow('card#%d' % i, img_warp)
     if display:
-        #no_glare = remove_glare(img_copy)
-        #img_concat = np.concatenate((img, no_glare), axis=1)
-        cv2.imshow('result', img)
-        '''
-        for i in range(len(obj_list)):
-            class_id, confidence, box = obj_list[i]
-            left, top, width, height = box
-            img_snip = img_copy[max(0, top):min(img.shape[0], top + height),
-                                max(0, left):min(img.shape[1], left + width)]
-            img_thresh, img_dilate, img_canny, img_hough = find_card(img_snip)
-            img_concat = np.concatenate((img_snip, img_thresh, img_dilate, img_canny, img_hough), axis=1)
-            cv2.imshow('feature#%d' % i, img_concat)
-        '''
+        cv2.imshow('Result', img_result)
         cv2.waitKey(0)
-        cv2.destroyAllWindows()
 
-    return obj_list
-
-
-def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
     if out_path is not None:
-        vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30,
-                                     (round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),
-                                      round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))))
+        cv2.imwrite(out_path, img_result.astype(np.uint8))
+    return det_cards, img_result
+
+
+def detect_video(capture, card_pool, hash_size=32, highfreq_factor=4, size_thresh=10000,
+                 out_path=None, display=True, show_graph=True, debug=False):
+    """
+    Identify all cards in the continuous video stream, display or save the result if needed
+    :param capture: input video stream
+    :param card_pool: pandas dataframe of all card's information
+    :param hash_size: param for pHash algorithm
+    :param highfreq_factor: param for pHash algorithm
+    :param size_thresh: threshold for size (in pixel) of the contour to be a candidate
+    :param out_path: path to save the result
+    :param display: flag for displaying the result
+    :param show_graph: flag to show graph
+    :param debug: flag for debug mode
+    :return: list of detected card's name/set and resulting image
+    :return:
+    """
+    # Get the dimension of the output video, and set it up
+    if show_graph:
+        img_graph = draw_card_graph({}, pd.DataFrame(), -1)  # Black image of the graph just to get the dimension
+        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) + img_graph.shape[1]
+        height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)), img_graph.shape[0])
+    else:
+        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
+        height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
+    if out_path is not None:
+        vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'MJPG'), 10.0, (width, height))
     max_num_obj = 0
-    while True:
-        ret, frame = capture.read()
-        if not ret:
-            # End of video
-            print("End of video. Press any key to exit")
-            cv2.waitKey(0)
-            break
-        img = frame.copy()
-        obj_list = detect_frame(net, classes, frame, thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim,
-                                display=False, out_path=None)
-        #cnts_rect = find_card(img)
-        max_num_obj = max(max_num_obj, len(obj_list))
-        if display:
-            img_result = frame.copy()
-            #img_result = cv2.drawContours(img_result, cnts_rect, -1, (0, 255, 0), 2)
-            #for i in range(len(cnts_rect)):
-            #    pts = np.float32([p[0] for p in cnts_rect[i]])
-            #    img_warp = four_point_transform(img, pts)
-            #    cv2.imshow('card#%d' % i, img_warp)
-            #for i in range(len(cnts_rect), max_num_obj):
-            #    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
-            #no_glare = remove_glare(img)
-            #img_thresh, img_erode, img_contour = find_card(no_glare)
-            #img_concat = np.concatenate((no_glare, img_contour), axis=1)
+    f_len = 10  # number of frames to consider to check for existing cards
+    exist_cards = {}
+    try:
+        while True:
+            ret, frame = capture.read()
+            start_time = time.time()
+            if not ret:
+                # End of video
+                print("End of video. Press any key to exit")
+                cv2.waitKey(0)
+                break
+            # Detect all cards from the current frame
+            det_cards, img_result = detect_frame(frame, card_pool, hash_size=hash_size, highfreq_factor=highfreq_factor,
+                                                 size_thresh=size_thresh, out_path=None, display=False, debug=debug)
+            if show_graph:
+                # If the card was already detected in the previous frame, append 1 to the list
+                # If the card previously detected was not found in this trame, append 0 to the list
+                # If the card wasn't previously detected, make a new list and add 1 to it
+                # If the same card is detected multiple times in the same frame, keep track of the duplicates
+                # The confidence will be calculated based on the number of frames the card was detected for
+                det_cards_count = collections.Counter(det_cards).items()
+                det_cards_list = []
+                for card, count in det_cards_count:
+                    card_name, card_set = card
+                    for i in range(count): 1
+                    key = '%s (%s) #%d' % (card_name, card_set, i + 1)
+                    det_cards_list.append(key)
+                gone = []
+                for key, val in exist_cards.items():
+                    if key in det_cards_list:
+                        exist_cards[key] = exist_cards[key][1 - f_len:] + [1]
+                    else:
+                        exist_cards[key] = exist_cards[key][1 - f_len:] + [0]
+                    if len(val) == f_len and sum(val) == 0:
+                        gone.append(key)
+                for key in det_cards_list:
+                    if key not in exist_cards.keys():
+                        exist_cards[key] = [1]
+                for key in gone:
+                    exist_cards.pop(key)
 
-            for i in range(len(obj_list)):
-                class_id, confidence, box = obj_list[i]
-                left, top, width, height = box
-                offset_ratio = 0.1
-                x1 = max(0, int(left - offset_ratio * width))
-                x2 = min(img.shape[1], int(left + (1 + offset_ratio) * width))
-                y1 = max(0, int(top - offset_ratio * height))
-                y2 = min(img.shape[0], int(top + (1 + offset_ratio) * height))
-                img_snip = img[y1:y2, x1:x2]
-                cnts = find_card(img_snip)
-                if len(cnts) > 0:
-                    cnt = cnts[-1]
-                    pts = np.float32([p[0] for p in cnt])
-                    img_warp = four_point_transform(img_snip, pts)
-                    img_warp = cv2.resize(img_warp, (card_width, card_height))
-                    img_card = img_warp[47:249, 22:294]
-                    img_card = Image.fromarray(img_card.astype('uint8'), 'RGB')
-                    card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
-                    print(card_hash - rift_hash)
-                    #img_thresh, img_dilate, img_contour = find_card(img_snip)
-                    #img_concat = np.concatenate((img_snip, img_contour), axis=1)
-                    cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
+                # Draw the graph based on the history of detected cards, then concatenate it with the result image
+                img_graph = draw_card_graph(exist_cards, card_pool, f_len)
+                img_save = np.zeros((height, width, 3), dtype=np.uint8)
+                img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
+                img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
+            else:
+                img_save = img_result
 
-                    cv2.imshow('card#%d' % i, img_warp)
-                else:
+            # Display the result
+            if display:
+                cv2.imshow('result', img_save)
+            if debug:
+                max_num_obj = max(max_num_obj, len(det_cards))
+                for i in range(len(det_cards), max_num_obj):
                     cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
-            for i in range(len(obj_list), max_num_obj):
-                cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
-            cv2.imshow('result', img_result)
-            #if len(obj_list) > 0:
-            #    cv2.waitKey(0)
 
-
+            elapsed_ms = (time.time() - start_time) * 1000
+            print('Elapsed time: %.2f ms' % elapsed_ms)
+            if out_path is not None:
+                vid_writer.write(img_save.astype(np.uint8))
+            cv2.waitKey(1)
+    except KeyboardInterrupt:
+        capture.release()
         if out_path is not None:
-            vid_writer.write(frame.astype(np.uint8))
-        cv2.waitKey(1)
-
-    if out_path is not None:
-        vid_writer.release()
-    cv2.destroyAllWindows()
+            vid_writer.release()
+        cv2.destroyAllWindows()
 
 
 def main():
     # Specify paths for all necessary files
-    test_path = os.path.abspath('../data/test4.mp4')
-    #weight_path = 'backup/tiny_yolo_10_39500.weights'
-    #cfg_path = 'cfg/tiny_yolo_10.cfg'
-    #class_path = "data/obj_10.names"
-    weight_path = 'weights/second_general/tiny_yolo_final.weights'
-    cfg_path = 'cfg/tiny_yolo.cfg'
-    class_path = 'data/obj.names'
+    #test_path = os.path.abspath('test_file/test4.mp4')
+    test_path = None
     out_dir = 'out'
-    if not os.path.isfile(test_path):
-        print('The test file %s doesn\'t exist!' % os.path.abspath(test_path))
-        return
-    if not os.path.isfile(weight_path):
-        print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path))
-        return
-    if not os.path.isfile(cfg_path):
-        print('The config file %s doesn\'t exist!' % os.path.abspath(test_path))
-        return
-    if not os.path.isfile(class_path):
-        print('The class file %s doesn\'t exist!' % os.path.abspath(test_path))
-        return
+    hash_size = 32
+    highfreq_factor = 4
 
-    thresh_conf = 0.01
-    thresh_nms = 0.8
-
-    # Setup
-    # Read class names from text file
-    with open(class_path, 'r') as f:
-        classes = [line.strip() for line in f.readlines()]
-    # Load up the neural net using the config and weights
-    net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path)
-    net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
-    net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
-
-    # Save the detection result if out_dir is provided
-    if out_dir is None or out_dir == '':
-        out_path = None
+    pck_path = os.path.abspath('card_pool_%d_%d.pck' % (hash_size, highfreq_factor))
+    if os.path.isfile(pck_path):
+        card_pool = pd.read_pickle(pck_path)
     else:
-        out_path = out_dir + '/' + os.path.split(test_path)[1]
-    # Check if test file is image or video
-    test_ext = test_path[test_path.find('.') + 1:]
+        # Merge database for all cards, then calculate pHash values of each, store them
+        df_list = []
+        for set_name in fetch_data.all_set_list:
+            csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name)
+            df = fetch_data.load_all_cards_text(csv_name)
+            df_list.append(df)
+        card_pool = pd.concat(df_list, sort=True)
+        card_pool.reset_index(drop=True, inplace=True)
+        card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
 
-    if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
-        img = cv2.imread(test_path)
-        detect_frame(net, classes, img, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms)
-    else:
+        card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_size, highfreq_factor=highfreq_factor)
+    card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']]
+
+    # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it
+    # significantly increases speed for subtracting hashes in the future.
+    card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten())
+
+
+    # If the test file isn't given, use webcam to capture video
+    if test_path is None:
         capture = cv2.VideoCapture(0)
-        detect_video(net, classes, capture, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms)
+        detect_video(capture, card_pool, out_path='%s/result.avi' % out_dir, display=True, show_graph=True, debug=False)
         capture.release()
+    else:
+        # Save the detection result if out_dir is provided
+        if out_dir is None or out_dir == '':
+            out_path = None
+        else:
+            f_name = os.path.split(test_path)[1]
+            out_path = '%s/%s.avi' % (out_dir, f_name[:f_name.find('.')])
+
+        if not os.path.isfile(test_path):
+            print('The test file %s doesn\'t exist!' % os.path.abspath(test_path))
+            return
+        # Check if test file is image or video
+        test_ext = test_path[test_path.find('.') + 1:]
+        if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
+            # Test file is an image
+            img = cv2.imread(test_path)
+            detect_frame(img, card_pool, out_path=out_path)
+        else:
+            # Test file is a video
+            capture = cv2.VideoCapture(test_path)
+            detect_video(capture, card_pool, out_path=out_path, display=True, show_graph=True, debug=False)
+            capture.release()
     pass
 
 

--
Gitblit v1.10.0