From e11430970b5470fb92127901454a1c90e5cc45e4 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Thu, 25 Jan 2018 16:04:06 +0000
Subject: [PATCH] Fixed compile error
---
src/convolutional_layer.c | 239 +++++++++++++++++++++++++++++++----------------------------
1 files changed, 125 insertions(+), 114 deletions(-)
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index ad2d8a5..a3247d0 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -8,6 +8,10 @@
#include <stdio.h>
#include <time.h>
+#ifdef CUDNN
+#pragma comment(lib, "cudnn.lib")
+#endif
+
#ifdef AI2
#include "xnor_layer.h"
#endif
@@ -19,28 +23,28 @@
void swap_binary(convolutional_layer *l)
{
- float *swap = l->filters;
- l->filters = l->binary_filters;
- l->binary_filters = swap;
+ float *swap = l->weights;
+ l->weights = l->binary_weights;
+ l->binary_weights = swap;
#ifdef GPU
- swap = l->filters_gpu;
- l->filters_gpu = l->binary_filters_gpu;
- l->binary_filters_gpu = swap;
+ swap = l->weights_gpu;
+ l->weights_gpu = l->binary_weights_gpu;
+ l->binary_weights_gpu = swap;
#endif
}
-void binarize_filters(float *filters, int n, int size, float *binary)
+void binarize_weights(float *weights, int n, int size, float *binary)
{
int i, f;
for(f = 0; f < n; ++f){
float mean = 0;
for(i = 0; i < size; ++i){
- mean += fabs(filters[f*size + i]);
+ mean += fabs(weights[f*size + i]);
}
mean = mean / size;
for(i = 0; i < size; ++i){
- binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
+ binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
}
}
}
@@ -103,7 +107,7 @@
size_t s = 0;
cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
l.srcTensorDesc,
- l.filterDesc,
+ l.weightDesc,
l.convDesc,
l.dstTensorDesc,
l.fw_algo,
@@ -113,12 +117,12 @@
l.srcTensorDesc,
l.ddstTensorDesc,
l.convDesc,
- l.dfilterDesc,
+ l.dweightDesc,
l.bf_algo,
&s);
if (s > most) most = s;
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
- l.filterDesc,
+ l.weightDesc,
l.ddstTensorDesc,
l.convDesc,
l.dsrcTensorDesc,
@@ -137,22 +141,26 @@
{
cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
- cudnnSetFilter4dDescriptor(l->dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+ cudnnSetFilter4dDescriptor(l->dweightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
- cudnnSetFilter4dDescriptor(l->filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
- cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
- cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
+ cudnnSetFilter4dDescriptor(l->weightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+#if(CUDNN_MAJOR >= 6)
+ cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn 6.0
+#else
+ cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); // cudnn 5.1
+#endif
+ cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
l->srcTensorDesc,
- l->filterDesc,
+ l->weightDesc,
l->convDesc,
l->dstTensorDesc,
CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
0,
&l->fw_algo);
cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
- l->filterDesc,
+ l->weightDesc,
l->ddstTensorDesc,
l->convDesc,
l->dsrcTensorDesc,
@@ -163,7 +171,7 @@
l->srcTensorDesc,
l->ddstTensorDesc,
l->convDesc,
- l->dfilterDesc,
+ l->dweightDesc,
CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
0,
&l->bf_algo);
@@ -171,7 +179,7 @@
#endif
#endif
-convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor)
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam)
{
int i;
convolutional_layer l = {0};
@@ -189,15 +197,15 @@
l.pad = padding;
l.batch_normalize = batch_normalize;
- l.filters = calloc(c*n*size*size, sizeof(float));
- l.filter_updates = calloc(c*n*size*size, sizeof(float));
+ l.weights = calloc(c*n*size*size, sizeof(float));
+ l.weight_updates = calloc(c*n*size*size, sizeof(float));
l.biases = calloc(n, sizeof(float));
l.bias_updates = calloc(n, sizeof(float));
// float scale = 1./sqrt(size*size*c);
float scale = sqrt(2./(size*size*c));
- for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
+ for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1);
int out_h = convolutional_out_height(l);
int out_w = convolutional_out_width(l);
l.out_h = out_h;
@@ -206,16 +214,19 @@
l.outputs = l.out_h * l.out_w * l.out_c;
l.inputs = l.w * l.h * l.c;
- l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
- l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
+ l.output = calloc(l.batch*l.outputs, sizeof(float));
+ l.delta = calloc(l.batch*l.outputs, sizeof(float));
+ l.forward = forward_convolutional_layer;
+ l.backward = backward_convolutional_layer;
+ l.update = update_convolutional_layer;
if(binary){
- l.binary_filters = calloc(c*n*size*size, sizeof(float));
- l.cfilters = calloc(c*n*size*size, sizeof(char));
+ l.binary_weights = calloc(c*n*size*size, sizeof(float));
+ l.cweights = calloc(c*n*size*size, sizeof(char));
l.scales = calloc(n, sizeof(float));
}
if(xnor){
- l.binary_filters = calloc(c*n*size*size, sizeof(float));
+ l.binary_weights = calloc(c*n*size*size, sizeof(float));
l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
}
@@ -229,29 +240,45 @@
l.mean = calloc(n, sizeof(float));
l.variance = calloc(n, sizeof(float));
+ l.mean_delta = calloc(n, sizeof(float));
+ l.variance_delta = calloc(n, sizeof(float));
+
l.rolling_mean = calloc(n, sizeof(float));
l.rolling_variance = calloc(n, sizeof(float));
+ l.x = calloc(l.batch*l.outputs, sizeof(float));
+ l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
+ }
+ if(adam){
+ l.adam = 1;
+ l.m = calloc(c*n*size*size, sizeof(float));
+ l.v = calloc(c*n*size*size, sizeof(float));
}
#ifdef GPU
+ l.forward_gpu = forward_convolutional_layer_gpu;
+ l.backward_gpu = backward_convolutional_layer_gpu;
+ l.update_gpu = update_convolutional_layer_gpu;
+
if(gpu_index >= 0){
- l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
- l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
+ if (adam) {
+ l.m_gpu = cuda_make_array(l.m, c*n*size*size);
+ l.v_gpu = cuda_make_array(l.v, c*n*size*size);
+ }
+
+ l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
+ l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
l.biases_gpu = cuda_make_array(l.biases, n);
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
- l.scales_gpu = cuda_make_array(l.scales, n);
- l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
-
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
if(binary){
- l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+ l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size);
}
if(xnor){
- l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+ l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size);
l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
}
@@ -265,16 +292,19 @@
l.mean_delta_gpu = cuda_make_array(l.mean, n);
l.variance_delta_gpu = cuda_make_array(l.variance, n);
+ l.scales_gpu = cuda_make_array(l.scales, n);
+ l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
+
l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
}
#ifdef CUDNN
cudnnCreateTensorDescriptor(&l.srcTensorDesc);
cudnnCreateTensorDescriptor(&l.dstTensorDesc);
- cudnnCreateFilterDescriptor(&l.filterDesc);
+ cudnnCreateFilterDescriptor(&l.weightDesc);
cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
- cudnnCreateFilterDescriptor(&l.dfilterDesc);
+ cudnnCreateFilterDescriptor(&l.dweightDesc);
cudnnCreateConvolutionDescriptor(&l.convDesc);
cudnn_convolutional_setup(&l);
#endif
@@ -283,7 +313,7 @@
l.workspace_size = get_workspace_size(l);
l.activation = activation;
- fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+ fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
return l;
}
@@ -294,7 +324,7 @@
for(i = 0; i < l.n; ++i){
float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
for(j = 0; j < l.c*l.size*l.size; ++j){
- l.filters[i*l.c*l.size*l.size + j] *= scale;
+ l.weights[i*l.c*l.size*l.size + j] *= scale;
}
l.biases[i] -= l.rolling_mean[i] * scale;
l.scales[i] = 1;
@@ -305,7 +335,7 @@
void test_convolutional_layer()
{
- convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0);
+ convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0);
l.batch_normalize = 1;
float data[] = {1,1,1,1,1,
1,1,1,1,1,
@@ -340,17 +370,27 @@
l->outputs = l->out_h * l->out_w * l->out_c;
l->inputs = l->w * l->h * l->c;
- l->output = realloc(l->output,
- l->batch*out_h * out_w * l->n*sizeof(float));
- l->delta = realloc(l->delta,
- l->batch*out_h * out_w * l->n*sizeof(float));
+ l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
+ l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
+ if(l->batch_normalize){
+ l->x = realloc(l->x, l->batch*l->outputs*sizeof(float));
+ l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
+ }
#ifdef GPU
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
- l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
- l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
+ l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
+ l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+
+ if(l->batch_normalize){
+ cuda_free(l->x_gpu);
+ cuda_free(l->x_norm_gpu);
+
+ l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+ l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+ }
#ifdef CUDNN
cudnn_convolutional_setup(l);
#endif
@@ -398,43 +438,10 @@
int out_w = convolutional_out_width(l);
int i;
-
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
- /*
- if(l.binary){
- binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
- binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
- swap_binary(&l);
- }
- */
-
- /*
- if(l.binary){
- int m = l.n;
- int k = l.size*l.size*l.c;
- int n = out_h*out_w;
-
- char *a = l.cfilters;
- float *b = state.workspace;
- float *c = l.output;
-
- for(i = 0; i < l.batch; ++i){
- im2col_cpu(state.input, l.c, l.h, l.w,
- l.size, l.stride, l.pad, b);
- gemm_bin(m,n,k,1,a,k,b,n,c,n);
- c += n*m;
- state.input += l.c*l.h*l.w;
- }
- scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
- add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
- activate_array(l.output, m*n*l.batch, l.activation);
- return;
- }
- */
-
if(l.xnor){
- binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
+ binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
swap_binary(&l);
binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input);
state.input = l.binary_input;
@@ -444,22 +451,17 @@
int k = l.size*l.size*l.c;
int n = out_h*out_w;
- if (l.xnor && l.c%32 == 0 && AI2) {
- forward_xnor_layer(l, state);
- printf("xnor\n");
- } else {
- float *a = l.filters;
- float *b = state.workspace;
- float *c = l.output;
+ float *a = l.weights;
+ float *b = state.workspace;
+ float *c = l.output;
- for(i = 0; i < l.batch; ++i){
- im2col_cpu(state.input, l.c, l.h, l.w,
- l.size, l.stride, l.pad, b);
- gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
- c += n*m;
- state.input += l.c*l.h*l.w;
- }
+ for(i = 0; i < l.batch; ++i){
+ im2col_cpu(state.input, l.c, l.h, l.w,
+ l.size, l.stride, l.pad, b);
+ gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+ c += n*m;
+ state.input += l.c*l.h*l.w;
}
if(l.batch_normalize){
@@ -482,10 +484,14 @@
gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
+ if(l.batch_normalize){
+ backward_batchnorm_layer(l, state);
+ }
+
for(i = 0; i < l.batch; ++i){
float *a = l.delta + i*m*k;
float *b = state.workspace;
- float *c = l.filter_updates;
+ float *c = l.weight_updates;
float *im = state.input+i*l.c*l.h*l.w;
@@ -494,7 +500,7 @@
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
if(state.delta){
- a = l.filters;
+ a = l.weights;
b = l.delta + i*m*k;
c = state.workspace;
@@ -511,36 +517,41 @@
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
scal_cpu(l.n, momentum, l.bias_updates, 1);
- axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
- axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
- scal_cpu(size, momentum, l.filter_updates, 1);
+ if(l.scales){
+ axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
+ scal_cpu(l.n, momentum, l.scale_updates, 1);
+ }
+
+ axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1);
+ axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
+ scal_cpu(size, momentum, l.weight_updates, 1);
}
-image get_convolutional_filter(convolutional_layer l, int i)
+image get_convolutional_weight(convolutional_layer l, int i)
{
int h = l.size;
int w = l.size;
int c = l.c;
- return float_to_image(w,h,c,l.filters+i*h*w*c);
+ return float_to_image(w,h,c,l.weights+i*h*w*c);
}
-void rgbgr_filters(convolutional_layer l)
+void rgbgr_weights(convolutional_layer l)
{
int i;
for(i = 0; i < l.n; ++i){
- image im = get_convolutional_filter(l, i);
+ image im = get_convolutional_weight(l, i);
if (im.c == 3) {
rgbgr_image(im);
}
}
}
-void rescale_filters(convolutional_layer l, float scale, float trans)
+void rescale_weights(convolutional_layer l, float scale, float trans)
{
int i;
for(i = 0; i < l.n; ++i){
- image im = get_convolutional_filter(l, i);
+ image im = get_convolutional_weight(l, i);
if (im.c == 3) {
scale_image(im, scale);
float sum = sum_array(im.data, im.w*im.h*im.c);
@@ -549,21 +560,21 @@
}
}
-image *get_filters(convolutional_layer l)
+image *get_weights(convolutional_layer l)
{
- image *filters = calloc(l.n, sizeof(image));
+ image *weights = calloc(l.n, sizeof(image));
int i;
for(i = 0; i < l.n; ++i){
- filters[i] = copy_image(get_convolutional_filter(l, i));
- //normalize_image(filters[i]);
+ weights[i] = copy_image(get_convolutional_weight(l, i));
+ //normalize_image(weights[i]);
}
- return filters;
+ return weights;
}
-image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_filters)
+image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights)
{
- image *single_filters = get_filters(l);
- show_images(single_filters, l.n, window);
+ image *single_weights = get_weights(l);
+ show_images(single_weights, l.n, window);
image delta = get_convolutional_image(l);
image dc = collapse_image_layers(delta, 1);
@@ -572,6 +583,6 @@
//show_image(dc, buff);
//save_image(dc, buff);
free_image(dc);
- return single_filters;
+ return single_weights;
}
--
Gitblit v1.10.0