From e18a303d1c17acd30c21162826c554ee770cf35a Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sat, 21 Apr 2018 12:19:58 +0000
Subject: [PATCH] Fixed utils.c for short lines.

---
 src/convolutional_layer.c |  148 +++++++++++++++++++++++++++++++++++++++++--------
 1 files changed, 124 insertions(+), 24 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index a3247d0..9a76bdf 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -137,26 +137,71 @@
 
 #ifdef GPU
 #ifdef CUDNN
-void cudnn_convolutional_setup(layer *l)
+void cudnn_convolutional_setup(layer *l, int cudnn_preference)
 {
-    cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
-    cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
-    cudnnSetFilter4dDescriptor(l->dweightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 
 
-    cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
-    cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
-    cudnnSetFilter4dDescriptor(l->weightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); 
+#ifdef CUDNN_HALF
+	// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): 
+	//   Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
+	// PSEUDO_HALF_CONFIG is required for Tensor Cores - our case!
+	const cudnnDataType_t data_type = CUDNN_DATA_HALF;
+#else
+	cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
+#endif
+
+#if(CUDNN_MAJOR >= 7)
+	// Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
+	// For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT
+	// otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF
+	// Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
+	// 1. Accumulation into FP32
+	// 2. Loss Scaling - required only for: activation gradients. We do not use.
+	// 3. FP32 Master Copy of Weights
+	// More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
+	cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH);
+#endif
+
+	// INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported 
+	//   on architectures with DP4A support (compute capability 6.1 and later).
+	//cudnnDataType_t data_type = CUDNN_DATA_INT8;
+
+	// backward delta
+    cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
+    cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
+    cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+
+	// forward
+    cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
+    cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
+    cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+
+	// batch norm
+	cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
+	cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
+
+	cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
 #if(CUDNN_MAJOR >= 6)
-	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);	// cudnn 6.0
+	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);	// cudnn >= 6.0
 #else
 	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);	// cudnn 5.1
 #endif
+	int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST;
+	int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST;
+	int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST;
+	if (cudnn_preference == cudnn_smallest) 
+	{
+		forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE;
+		backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE;
+		backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE;
+		printf(" CUDNN-slow ");
+	}
+
 	cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
             l->srcTensorDesc,
             l->weightDesc,
             l->convDesc,
             l->dstTensorDesc,
-            CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
+			forward_algo,
             0,
             &l->fw_algo);
     cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
@@ -164,7 +209,7 @@
             l->ddstTensorDesc,
             l->convDesc,
             l->dsrcTensorDesc,
-            CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
+			backward_algo,
             0,
             &l->bd_algo);
     cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
@@ -172,9 +217,41 @@
             l->ddstTensorDesc,
             l->convDesc,
             l->dweightDesc,
-            CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
+			backward_filter,
             0,
             &l->bf_algo);
+
+	if (data_type == CUDNN_DATA_HALF) 
+	{
+		// HALF-16 if(data_type == CUDNN_DATA_HALF)
+		l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
+		l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
+		l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
+
+		// FLOAT-32 if(data_type == CUDNN_DATA_FLOAT)
+		//l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED;
+		//l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED;
+		//l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED;
+
+		int fw = 0, bd = 0, bf = 0;
+		if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) fw = 1;
+			//printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM \n");
+		if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED) fw = 2;
+			//printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED \n");
+
+		if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) bd = 1;
+			//printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1  \n");
+		if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED) bd = 2;
+			//printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED \n");
+
+		if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) bf = 1;
+			//printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1   \n");
+		if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED) bf = 2;
+			//printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED \n");
+
+		if (fw == 2 && bd == 2 && bf == 2) printf("TF ");
+		else if (fw == 1 && bd == 1 && bf == 1) printf("TH ");
+	}
 }
 #endif
 #endif
@@ -266,6 +343,10 @@
         }
 
         l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
+#ifdef CUDNN_HALF
+		l.weights_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weights, c*n*size*size / 2);
+		l.weight_updates_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weight_updates, c*n*size*size / 2);
+#endif
         l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
 
         l.biases_gpu = cuda_make_array(l.biases, n);
@@ -298,7 +379,10 @@
             l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
             l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
         }
-#ifdef CUDNN
+#ifdef CUDNN		
+		cudnnCreateTensorDescriptor(&l.normDstTensorDesc);
+		cudnnCreateTensorDescriptor(&l.normDstTensorDescF16);
+		cudnnCreateTensorDescriptor(&l.normTensorDesc);
         cudnnCreateTensorDescriptor(&l.srcTensorDesc);
         cudnnCreateTensorDescriptor(&l.dstTensorDesc);
         cudnnCreateFilterDescriptor(&l.weightDesc);
@@ -306,7 +390,7 @@
         cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
         cudnnCreateFilterDescriptor(&l.dweightDesc);
         cudnnCreateConvolutionDescriptor(&l.convDesc);
-        cudnn_convolutional_setup(&l);
+        cudnn_convolutional_setup(&l, cudnn_fastest);
 #endif
     }
 #endif
@@ -359,6 +443,8 @@
 
 void resize_convolutional_layer(convolutional_layer *l, int w, int h)
 {
+	int old_w = l->w;
+	int old_h = l->h;
     l->w = w;
     l->h = h;
     int out_w = convolutional_out_width(*l);
@@ -378,24 +464,38 @@
     }
 
 #ifdef GPU
-    cuda_free(l->delta_gpu);
-    cuda_free(l->output_gpu);
+	if (old_w < w || old_h < h) {
+		cuda_free(l->delta_gpu);
+		cuda_free(l->output_gpu);
 
-    l->delta_gpu =  cuda_make_array(l->delta,  l->batch*l->outputs);
-    l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+		l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
+		l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
 
-    if(l->batch_normalize){
-        cuda_free(l->x_gpu);
-        cuda_free(l->x_norm_gpu);
+		if (l->batch_normalize) {
+			cuda_free(l->x_gpu);
+			cuda_free(l->x_norm_gpu);
 
-        l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
-        l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
-    }
+			l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+			l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+		}
+	}
 #ifdef CUDNN
-    cudnn_convolutional_setup(l);
+    cudnn_convolutional_setup(l, cudnn_fastest);
 #endif
 #endif
     l->workspace_size = get_workspace_size(*l);
+
+#ifdef CUDNN
+	// check for excessive memory consumption 
+	size_t free_byte;
+	size_t total_byte;
+	check_error(cudaMemGetInfo(&free_byte, &total_byte));
+	if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
+		printf(" used slow CUDNN algo without Workspace! \n");
+		cudnn_convolutional_setup(l, cudnn_smallest);
+		l->workspace_size = get_workspace_size(*l);
+	}
+#endif
 }
 
 void add_bias(float *output, float *biases, int batch, int n, int size)

--
Gitblit v1.10.0