From e36182cd8c5dd5c6d0aa1f77cf5cdca87e8bb1f0 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 21 Nov 2014 23:35:19 +0000
Subject: [PATCH] cleaned up data parsing a lot. probably nothing broken?

---
 src/connected_layer.c |  200 ++++++++++++++++++++++++++++++++++---------------
 1 files changed, 139 insertions(+), 61 deletions(-)

diff --git a/src/connected_layer.c b/src/connected_layer.c
index d77a10c..05d4a03 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -1,97 +1,175 @@
 #include "connected_layer.h"
+#include "utils.h"
+#include "mini_blas.h"
 
 #include <math.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 
-connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activator)
+connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay)
 {
-    printf("Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
     int i;
     connected_layer *layer = calloc(1, sizeof(connected_layer));
+
+    layer->learning_rate = learning_rate;
+    layer->momentum = momentum;
+    layer->decay = decay;
+
     layer->inputs = inputs;
     layer->outputs = outputs;
+    layer->batch=batch;
 
-    layer->output = calloc(outputs, sizeof(double*));
-    layer->delta = calloc(outputs, sizeof(double*));
+    layer->output = calloc(batch*outputs, sizeof(float*));
+    layer->delta = calloc(batch*outputs, sizeof(float*));
 
-    layer->weight_updates = calloc(inputs*outputs, sizeof(double));
-    layer->weight_momentum = calloc(inputs*outputs, sizeof(double));
-    layer->weights = calloc(inputs*outputs, sizeof(double));
+    layer->weight_updates = calloc(inputs*outputs, sizeof(float));
+    //layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
+    layer->weights = calloc(inputs*outputs, sizeof(float));
+    float scale = 1./inputs;
+    scale = .01;
     for(i = 0; i < inputs*outputs; ++i)
-        layer->weights[i] = .01*(.5 - (double)rand()/RAND_MAX);
+        layer->weights[i] = scale*2*(rand_uniform()-.5);
 
-    layer->bias_updates = calloc(outputs, sizeof(double));
-    layer->bias_momentum = calloc(outputs, sizeof(double));
-    layer->biases = calloc(outputs, sizeof(double));
-    for(i = 0; i < outputs; ++i)
+    layer->bias_updates = calloc(outputs, sizeof(float));
+    //layer->bias_adapt = calloc(outputs, sizeof(float));
+    layer->biases = calloc(outputs, sizeof(float));
+    for(i = 0; i < outputs; ++i){
+        //layer->biases[i] = rand_normal()*scale + scale;
         layer->biases[i] = 1;
-
-    if(activator == SIGMOID){
-        layer->activation = sigmoid_activation;
-        layer->gradient = sigmoid_gradient;
-    }else if(activator == RELU){
-        layer->activation = relu_activation;
-        layer->gradient = relu_gradient;
-    }else if(activator == IDENTITY){
-        layer->activation = identity_activation;
-        layer->gradient = identity_gradient;
     }
 
+    #ifdef GPU
+    layer->weights_cl = cl_make_array(layer->weights, inputs*outputs);
+    layer->biases_cl = cl_make_array(layer->biases, outputs);
+
+    layer->weight_updates_cl = cl_make_array(layer->weight_updates, inputs*outputs);
+    layer->bias_updates_cl = cl_make_array(layer->bias_updates, outputs);
+
+    layer->output_cl = cl_make_array(layer->output, outputs*batch);
+    layer->delta_cl = cl_make_array(layer->delta, outputs*batch);
+    #endif
+    layer->activation = activation;
+    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
     return layer;
 }
 
-void forward_connected_layer(connected_layer layer, double *input)
+void update_connected_layer(connected_layer layer)
 {
-    int i, j;
-    for(i = 0; i < layer.outputs; ++i){
-        layer.output[i] = layer.biases[i];
-        for(j = 0; j < layer.inputs; ++j){
-            layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
-        }
-        layer.output[i] = layer.activation(layer.output[i]);
-    }
+    axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
+    scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
+
+    scal_cpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights, 1);
+    axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
+    scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
 }
 
-void learn_connected_layer(connected_layer layer, double *input)
+void forward_connected_layer(connected_layer layer, float *input)
 {
-    int i, j;
-    for(i = 0; i < layer.outputs; ++i){
-        layer.bias_updates[i] += layer.delta[i];
-        for(j = 0; j < layer.inputs; ++j){
-            layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j];
-        }
+    int i;
+    for(i = 0; i < layer.batch; ++i){
+        copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1);
     }
+    int m = layer.batch;
+    int k = layer.inputs;
+    int n = layer.outputs;
+    float *a = input;
+    float *b = layer.weights;
+    float *c = layer.output;
+    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+    activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
 }
 
-void update_connected_layer(connected_layer layer, double step, double momentum, double decay)
+void backward_connected_layer(connected_layer layer, float *input, float *delta)
 {
-    int i,j;
-    for(i = 0; i < layer.outputs; ++i){
-        layer.bias_momentum[i] = step*(layer.bias_updates[i] - decay*layer.biases[i]) + momentum*layer.bias_momentum[i];
-        layer.biases[i] += layer.bias_momentum[i];
-        for(j = 0; j < layer.inputs; ++j){
-            int index = i*layer.inputs+j;
-            layer.weight_momentum[index] = step*(layer.weight_updates[index] - decay*layer.weights[index]) + momentum*layer.weight_momentum[index];
-            layer.weights[index] += layer.weight_momentum[index];
-        }
+    int i;
+    gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta);
+    for(i = 0; i < layer.batch; ++i){
+        axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1);
     }
-    memset(layer.bias_updates, 0, layer.outputs*sizeof(double));
-    memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double));
+    int m = layer.inputs;
+    int k = layer.batch;
+    int n = layer.outputs;
+    float *a = input;
+    float *b = layer.delta;
+    float *c = layer.weight_updates;
+    gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
+
+    m = layer.batch;
+    k = layer.outputs;
+    n = layer.inputs;
+
+    a = layer.delta;
+    b = layer.weights;
+    c = delta;
+
+    if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
 }
 
-void backward_connected_layer(connected_layer layer, double *input, double *delta)
-{
-    int i, j;
+#ifdef GPU
 
-    for(j = 0; j < layer.inputs; ++j){
-        double grad = layer.gradient(input[j]);
-        delta[j] = 0;
-        for(i = 0; i < layer.outputs; ++i){
-            delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j];
-        }
-        delta[j] *= grad;
-    }
+void pull_connected_layer(connected_layer layer)
+{
+    cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
+    cl_read_array(layer.biases_cl, layer.biases, layer.outputs);
 }
 
+void push_connected_layer(connected_layer layer)
+{
+    cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
+    cl_write_array(layer.biases_cl, layer.biases, layer.outputs);
+}
+
+void update_connected_layer_gpu(connected_layer layer)
+{
+    axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
+    scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1);
+
+    scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1);
+    axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1);
+    scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1);
+    pull_connected_layer(layer);
+}
+
+void forward_connected_layer_gpu(connected_layer layer, cl_mem input)
+{
+    int i;
+    for(i = 0; i < layer.batch; ++i){
+        copy_ongpu_offset(layer.outputs, layer.biases_cl, 0, 1, layer.output_cl, i*layer.outputs, 1);
+    }
+    int m = layer.batch;
+    int k = layer.inputs;
+    int n = layer.outputs;
+    cl_mem a = input;
+    cl_mem b = layer.weights_cl;
+    cl_mem c = layer.output_cl;
+    gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
+    activate_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation);
+}
+
+void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta)
+{
+    int i;
+    gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl);
+    for(i = 0; i < layer.batch; ++i){
+        axpy_ongpu_offset(layer.outputs, 1, layer.delta_cl, i*layer.outputs, 1, layer.bias_updates_cl, 0, 1);
+    }
+    int m = layer.inputs;
+    int k = layer.batch;
+    int n = layer.outputs;
+    cl_mem a = input;
+    cl_mem b = layer.delta_cl;
+    cl_mem c = layer.weight_updates_cl;
+    gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
+
+    m = layer.batch;
+    k = layer.outputs;
+    n = layer.inputs;
+
+    a = layer.delta_cl;
+    b = layer.weights_cl;
+    c = delta;
+
+    if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
+}
+    #endif

--
Gitblit v1.10.0