From e36182cd8c5dd5c6d0aa1f77cf5cdca87e8bb1f0 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 21 Nov 2014 23:35:19 +0000
Subject: [PATCH] cleaned up data parsing a lot. probably nothing broken?

---
 src/network.c |  380 +++++++++++++++++++++++++----------------------------
 1 files changed, 178 insertions(+), 202 deletions(-)

diff --git a/src/network.c b/src/network.c
index ef80110..339e6eb 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,14 +1,19 @@
 #include <stdio.h>
+#include <time.h>
 #include "network.h"
 #include "image.h"
 #include "data.h"
 #include "utils.h"
 
+#include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
+#include "cost_layer.h"
 #include "normalization_layer.h"
+#include "freeweight_layer.h"
 #include "softmax_layer.h"
+#include "dropout_layer.h"
 
 network make_network(int n, int batch)
 {
@@ -20,145 +25,14 @@
     net.outputs = 0;
     net.output = 0;
     #ifdef GPU
-    net.input_cl = 0;
+    net.input_cl = calloc(1, sizeof(cl_mem));
+    net.truth_cl = calloc(1, sizeof(cl_mem));
     #endif
     return net;
 }
 
-void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
-{
-    int i;
-    fprintf(fp, "[convolutional]\n");
-    if(first) fprintf(fp,   "batch=%d\n"
-                            "height=%d\n"
-                            "width=%d\n"
-                            "channels=%d\n",
-                            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "filters=%d\n"
-                "size=%d\n"
-                "stride=%d\n"
-                "activation=%s\n",
-                l->n, l->size, l->stride,
-                get_activation_string(l->activation));
-    fprintf(fp, "data=");
-    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
-    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
-    fprintf(fp, "\n\n");
-}
-void print_connected_cfg(FILE *fp, connected_layer *l, int first)
-{
-    int i;
-    fprintf(fp, "[connected]\n");
-    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    fprintf(fp, "output=%d\n"
-            "activation=%s\n",
-            l->outputs,
-            get_activation_string(l->activation));
-    fprintf(fp, "data=");
-    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
-    for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
-    fprintf(fp, "\n\n");
-}
 
-void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
-{
-    fprintf(fp, "[maxpool]\n");
-    if(first) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "stride=%d\n\n", l->stride);
-}
-
-void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
-{
-    fprintf(fp, "[localresponsenormalization]\n");
-    if(first) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "size=%d\n"
-                "alpha=%g\n"
-                "beta=%g\n"
-                "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
-}
-
-void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
-{
-    fprintf(fp, "[softmax]\n");
-    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    fprintf(fp, "\n");
-}
-
-void save_network(network net, char *filename)
-{
-    FILE *fp = fopen(filename, "w");
-    if(!fp) file_error(filename);
-    int i;
-    for(i = 0; i < net.n; ++i)
-    {
-        if(net.types[i] == CONVOLUTIONAL)
-            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
-        else if(net.types[i] == CONNECTED)
-            print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
-        else if(net.types[i] == MAXPOOL)
-            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
-        else if(net.types[i] == NORMALIZATION)
-            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
-        else if(net.types[i] == SOFTMAX)
-            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
-    }
-    fclose(fp);
-}
-
-#ifdef GPU
-void forward_network(network net, float *input, int train)
-{
-    cl_setup();
-    size_t size = get_network_input_size(net);
-    if(!net.input_cl){
-        net.input_cl = clCreateBuffer(cl.context,
-            CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error);
-        check_error(cl);
-    }
-    cl_write_array(net.input_cl, input, size);
-    cl_mem input_cl = net.input_cl;
-    int i;
-    for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer_gpu(layer, input_cl);
-            input_cl = layer.output_cl;
-            input = layer.output;
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input, train);
-            input = layer.output;
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == NORMALIZATION){
-            normalization_layer layer = *(normalization_layer *)net.layers[i];
-            forward_normalization_layer(layer, input);
-            input = layer.output;
-        }
-    }
-}
-
-#else
-
-void forward_network(network net, float *input, int train)
+void forward_network(network net, float *input, float *truth, int train)
 {
     int i;
     for(i = 0; i < net.n; ++i){
@@ -169,9 +43,18 @@
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input, train);
+            forward_connected_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == CROP){
+            crop_layer layer = *(crop_layer *)net.layers[i];
+            forward_crop_layer(layer, input);
+            input = layer.output;
+        }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            forward_cost_layer(layer, input, truth);
+        }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
             forward_softmax_layer(layer, input);
@@ -187,17 +70,26 @@
             forward_normalization_layer(layer, input);
             input = layer.output;
         }
+        else if(net.types[i] == DROPOUT){
+            if(!train) continue;
+            dropout_layer layer = *(dropout_layer *)net.layers[i];
+            forward_dropout_layer(layer, input);
+        }
+        else if(net.types[i] == FREEWEIGHT){
+            if(!train) continue;
+            freeweight_layer layer = *(freeweight_layer *)net.layers[i];
+            forward_freeweight_layer(layer, input);
+        }
     }
 }
-#endif
 
-void update_network(network net, float step, float momentum, float decay)
+void update_network(network net)
 {
     int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer(layer, step, momentum, decay);
+            update_convolutional_layer(layer);
         }
         else if(net.types[i] == MAXPOOL){
             //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -210,7 +102,7 @@
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer, step, momentum, decay);
+            update_connected_layer(layer);
         }
     }
 }
@@ -226,6 +118,10 @@
     } else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.output;
+    } else if(net.types[i] == DROPOUT){
+        return get_network_output_layer(net, i-1);
+    } else if(net.types[i] == FREEWEIGHT){
+        return get_network_output_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output;
@@ -237,7 +133,9 @@
 }
 float *get_network_output(network net)
 {
-    return get_network_output_layer(net, net.n-1);
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
+    return get_network_output_layer(net, i);
 }
 
 float *get_network_delta_layer(network net, int i)
@@ -251,6 +149,10 @@
     } else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.delta;
+    } else if(net.types[i] == DROPOUT){
+        return get_network_delta_layer(net, i-1);
+    } else if(net.types[i] == FREEWEIGHT){
+        return get_network_delta_layer(net, i-1);
     } else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta;
@@ -258,6 +160,14 @@
     return 0;
 }
 
+float get_network_cost(network net)
+{
+    if(net.types[net.n-1] == COST){
+        return ((cost_layer *)net.layers[net.n-1])->output[0];
+    }
+    return 0;
+}
+
 float *get_network_delta(network net)
 {
     return get_network_delta_layer(net, net.n-1);
@@ -272,7 +182,9 @@
     for(i = 0; i < get_network_output_size(net)*net.batch; ++i){
         //if(i %get_network_output_size(net) == 0) printf("\n");
         //printf("%5.2f %5.2f, ", out[i], truth[i]);
+        //if(i == get_network_output_size(net)) printf("\n");
         delta[i] = truth[i] - out[i];
+        //printf("%.10f, ", out[i]);
         sum += delta[i]*delta[i];
     }
     //printf("\n");
@@ -286,9 +198,8 @@
     return max_index(out, k);
 }
 
-float backward_network(network net, float *input, float *truth)
+void backward_network(network net, float *input)
 {
-    float error = calculate_error_network(net, truth);
     int i;
     float *prev_input;
     float *prev_delta;
@@ -306,7 +217,7 @@
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_maxpool_layer(layer, prev_delta);
         }
         else if(net.types[i] == NORMALIZATION){
             normalization_layer layer = *(normalization_layer *)net.layers[i];
@@ -314,97 +225,94 @@
         }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
-            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_softmax_layer(layer, prev_delta);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             backward_connected_layer(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == COST){
+            cost_layer layer = *(cost_layer *)net.layers[i];
+            backward_cost_layer(layer, prev_input, prev_delta);
+        }
     }
-    return error;
 }
 
-float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
+
+
+
+float train_network_datum(network net, float *x, float *y)
 {
-    forward_network(net, x, 1);
+    forward_network(net, x, y, 1);
     //int class = get_predicted_class_network(net);
-    float error = backward_network(net, x, y);
-    update_network(net, step, momentum, decay);
+    backward_network(net, x);
+    float error = get_network_cost(net);
+    update_network(net);
     //return (y[class]?1:0);
     return error;
 }
 
-float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
+float train_network_sgd(network net, data d, int n)
 {
     int batch = net.batch;
     float *X = calloc(batch*d.X.cols, sizeof(float));
     float *y = calloc(batch*d.y.cols, sizeof(float));
 
-    int i,j;
+    int i;
     float sum = 0;
     for(i = 0; i < n; ++i){
-        for(j = 0; j < batch; ++j){
-            int index = rand()%d.X.rows;
-            memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
-            memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
-        }
-        float err = train_network_datum(net, X, y, step, momentum, decay);
+        get_random_batch(d, batch, X, y);
+        float err = train_network_datum(net, X, y);
         sum += err;
-        //train_network_datum(net, X, y, step, momentum, decay);
-        /*
-        float *y = d.y.vals[index];
-        int class = get_predicted_class_network(net);
-        correct += (y[class]?1:0);
-        */
-
-/*
-        for(j = 0; j < d.y.cols*batch; ++j){
-            printf("%6.3f ", y[j]);
-        }
-        printf("\n");
-        for(j = 0; j < d.y.cols*batch; ++j){
-            printf("%6.3f ", get_network_output(net)[j]);
-        }
-        printf("\n");
-        printf("\n");
-        */
-
-
-        //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
-        //if((i+1)%10 == 0){
-        //    printf("%d: %f\n", (i+1), (float)correct/(i+1));
-        //}
     }
-    //printf("Accuracy: %f\n",(float) correct/n);
     free(X);
     free(y);
     return (float)sum/(n*batch);
 }
-float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
-{
-    int i;
-    int correct = 0;
-    for(i = 0; i < n; ++i){
-        int index = rand()%d.X.rows;
-        float *x = d.X.vals[index];
-        float *y = d.y.vals[index];
-        forward_network(net, x, 1);
-        int class = get_predicted_class_network(net);
-        backward_network(net, x, y);
-        correct += (y[class]?1:0);
-    }
-    update_network(net, step, momentum, decay);
-    return (float)correct/n;
 
+float train_network_batch(network net, data d, int n)
+{
+    int i,j;
+    float sum = 0;
+    int batch = 2;
+    for(i = 0; i < n; ++i){
+        for(j = 0; j < batch; ++j){
+            int index = rand()%d.X.rows;
+            float *x = d.X.vals[index];
+            float *y = d.y.vals[index];
+            forward_network(net, x, y, 1);
+            backward_network(net, x);
+            sum += get_network_cost(net);
+        }
+        update_network(net);
+    }
+    return (float)sum/(n*batch);
 }
 
+float train_network_data_cpu(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
 
-void train_network(network net, data d, float step, float momentum, float decay)
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
+void train_network(network net, data d)
 {
     int i;
     int correct = 0;
     for(i = 0; i < d.X.rows; ++i){
-        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
+        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]);
         if(i%100 == 0){
             visualize_network(net);
             cvWaitKey(10);
@@ -428,6 +336,13 @@
     else if(net.types[i] == CONNECTED){
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.inputs;
+    } else if(net.types[i] == DROPOUT){
+        dropout_layer layer = *(dropout_layer *) net.layers[i];
+        return layer.inputs;
+    }
+    else if(net.types[i] == FREEWEIGHT){
+        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
+        return layer.inputs;
     }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
@@ -452,6 +367,14 @@
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.outputs;
     }
+    else if(net.types[i] == DROPOUT){
+        dropout_layer layer = *(dropout_layer *) net.layers[i];
+        return layer.inputs;
+    }
+    else if(net.types[i] == FREEWEIGHT){
+        freeweight_layer layer = *(freeweight_layer *) net.layers[i];
+        return layer.inputs;
+    }
     else if(net.types[i] == SOFTMAX){
         softmax_layer layer = *(softmax_layer *)net.layers[i];
         return layer.inputs;
@@ -493,7 +416,8 @@
 
 int get_network_output_size(network net)
 {
-    int i = net.n-1;
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
     return get_network_output_size_layer(net, i);
 }
 
@@ -516,6 +440,10 @@
         normalization_layer layer = *(normalization_layer *)net.layers[i];
         return get_normalization_image(layer);
     }
+    else if(net.types[i] == CROP){
+        crop_layer layer = *(crop_layer *)net.layers[i];
+        return get_crop_image(layer);
+    }
     return make_empty_image(0,0,0);
 }
 
@@ -534,6 +462,7 @@
     image *prev = 0;
     int i;
     char buff[256];
+    //show_image(get_network_image_layer(net, 0), "Crop");
     for(i = 0; i < net.n; ++i){
         sprintf(buff, "Layer %d", i);
         if(net.types[i] == CONVOLUTIONAL){
@@ -547,19 +476,52 @@
     } 
 }
 
+void top_predictions(network net, int k, int *index)
+{
+    int size = get_network_output_size(net);
+    float *out = get_network_output(net);
+    top_k(out, size, k, index);
+}
+
+
 float *network_predict(network net, float *input)
 {
-    forward_network(net, input, 0);
+    forward_network(net, input, 0, 0);
     float *out = get_network_output(net);
     return out;
 }
 
+matrix network_predict_data_multi(network net, data test, int n)
+{
+    int i,j,b,m;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        for(m = 0; m < n; ++m){
+            float *out = network_predict(net, X);
+            for(b = 0; b < net.batch; ++b){
+                if(i+b == test.X.rows) break;
+                for(j = 0; j < k; ++j){
+                    pred.vals[i+b][j] += out[j+b*k]/n;
+                }
+            }
+        }
+    }
+    free(X);
+    return pred;   
+}
+
 matrix network_predict_data(network net, data test)
 {
     int i,j,b;
     int k = get_network_output_size(net);
     matrix pred = make_matrix(test.X.rows, k);
-    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    float *X = calloc(net.batch*test.X.cols, sizeof(float));
     for(i = 0; i < test.X.rows; i += net.batch){
         for(b = 0; b < net.batch; ++b){
             if(i+b == test.X.rows) break;
@@ -595,6 +557,12 @@
             image m = get_maxpool_image(layer);
             n = m.h*m.w*m.c;
         }
+        else if(net.types[i] == CROP){
+            crop_layer layer = *(crop_layer *)net.layers[i];
+            output = layer.output;
+            image m = get_crop_image(layer);
+            n = m.h*m.w*m.c;
+        }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
             output = layer.output;
@@ -623,4 +591,12 @@
     return acc;
 }
 
+float network_accuracy_multi(network net, data d, int n)
+{
+    matrix guess = network_predict_data_multi(net, d, n);
+    float acc = matrix_accuracy(d.y, guess);
+    free_matrix(guess);
+    return acc;
+}
+
 

--
Gitblit v1.10.0