From e3ee7b7cd64894144a594c0caaa202f7aeac6723 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 15 Mar 2016 02:35:36 +0000
Subject: [PATCH] Hi Harley

---
 src/convolutional_layer.c |  225 ++++++++++++++++++++++++++++++++++++++++++++++++++------
 1 files changed, 200 insertions(+), 25 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 9c0dabe..159951d 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -41,7 +41,65 @@
     return float_to_image(w,h,c,l.delta);
 }
 
-convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
+void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
+{
+    int i,b,f;
+    for(f = 0; f < n; ++f){
+        float sum = 0;
+        for(b = 0; b < batch; ++b){
+            for(i = 0; i < size; ++i){
+                int index = i + size*(f + n*b);
+                sum += delta[index] * x_norm[index];
+            }
+        }
+        scale_updates[f] += sum;
+    }
+}
+
+void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
+{
+
+    int i,j,k;
+    for(i = 0; i < filters; ++i){
+        mean_delta[i] = 0;
+        for (j = 0; j < batch; ++j) {
+            for (k = 0; k < spatial; ++k) {
+                int index = j*filters*spatial + i*spatial + k;
+                mean_delta[i] += delta[index];
+            }
+        }
+        mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
+    }
+}
+void  variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
+{
+
+    int i,j,k;
+    for(i = 0; i < filters; ++i){
+        variance_delta[i] = 0;
+        for(j = 0; j < batch; ++j){
+            for(k = 0; k < spatial; ++k){
+                int index = j*filters*spatial + i*spatial + k;
+                variance_delta[i] += delta[index]*(x[index] - mean[i]);
+            }
+        }
+        variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
+    }
+}
+void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
+{
+    int f, j, k;
+    for(j = 0; j < batch; ++j){
+        for(f = 0; f < filters; ++f){
+            for(k = 0; k < spatial; ++k){
+                int index = j*filters*spatial + f*spatial + k;
+                delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+            }
+        }
+    }
+}
+
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary)
 {
     int i;
     convolutional_layer l = {0};
@@ -51,22 +109,22 @@
     l.w = w;
     l.c = c;
     l.n = n;
+    l.binary = binary;
     l.batch = batch;
     l.stride = stride;
     l.size = size;
     l.pad = pad;
+    l.batch_normalize = batch_normalize;
 
     l.filters = calloc(c*n*size*size, sizeof(float));
     l.filter_updates = calloc(c*n*size*size, sizeof(float));
 
     l.biases = calloc(n, sizeof(float));
     l.bias_updates = calloc(n, sizeof(float));
-    //float scale = 1./sqrt(size*size*c);
+
+    // float scale = 1./sqrt(size*size*c);
     float scale = sqrt(2./(size*size*c));
-    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
-    for(i = 0; i < n; ++i){
-        l.biases[i] = scale;
-    }
+    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
     int out_h = convolutional_out_height(l);
     int out_w = convolutional_out_width(l);
     l.out_h = out_h;
@@ -79,17 +137,56 @@
     l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
     l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
 
-    #ifdef GPU
+    if(binary){
+        l.binary_filters = calloc(c*n*size*size, sizeof(float));
+    }
+
+    if(batch_normalize){
+        l.scales = calloc(n, sizeof(float));
+        l.scale_updates = calloc(n, sizeof(float));
+        for(i = 0; i < n; ++i){
+            l.scales[i] = 1;
+        }
+
+        l.mean = calloc(n, sizeof(float));
+        l.variance = calloc(n, sizeof(float));
+
+        l.rolling_mean = calloc(n, sizeof(float));
+        l.rolling_variance = calloc(n, sizeof(float));
+    }
+
+#ifdef GPU
     l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
     l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
 
     l.biases_gpu = cuda_make_array(l.biases, n);
     l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
 
+    l.scales_gpu = cuda_make_array(l.scales, n);
+    l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
+
     l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
     l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
     l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
-    #endif
+
+    if(binary){
+        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
+    }
+
+    if(batch_normalize){
+        l.mean_gpu = cuda_make_array(l.mean, n);
+        l.variance_gpu = cuda_make_array(l.variance, n);
+
+        l.rolling_mean_gpu = cuda_make_array(l.mean, n);
+        l.rolling_variance_gpu = cuda_make_array(l.variance, n);
+
+        l.mean_delta_gpu = cuda_make_array(l.mean, n);
+        l.variance_delta_gpu = cuda_make_array(l.variance, n);
+
+        l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+        l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+    }
+#endif
     l.activation = activation;
 
     fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
@@ -97,38 +194,92 @@
     return l;
 }
 
-void resize_convolutional_layer(convolutional_layer *l, int h, int w)
+void denormalize_convolutional_layer(convolutional_layer l)
 {
-    l->h = h;
+    int i, j;
+    for(i = 0; i < l.n; ++i){
+        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
+        for(j = 0; j < l.c*l.size*l.size; ++j){
+            l.filters[i*l.c*l.size*l.size + j] *= scale;
+        }
+        l.biases[i] -= l.rolling_mean[i] * scale;
+    }
+}
+
+void test_convolutional_layer()
+{
+    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0);
+    l.batch_normalize = 1;
+    float data[] = {1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3};
+    network_state state = {0};
+    state.input = data;
+    forward_convolutional_layer(l, state);
+}
+
+void resize_convolutional_layer(convolutional_layer *l, int w, int h)
+{
     l->w = w;
-    int out_h = convolutional_out_height(*l);
+    l->h = h;
     int out_w = convolutional_out_width(*l);
+    int out_h = convolutional_out_height(*l);
+
+    l->out_w = out_w;
+    l->out_h = out_h;
+
+    l->outputs = l->out_h * l->out_w * l->out_c;
+    l->inputs = l->w * l->h * l->c;
 
     l->col_image = realloc(l->col_image,
-                                out_h*out_w*l->size*l->size*l->c*sizeof(float));
+            out_h*out_w*l->size*l->size*l->c*sizeof(float));
     l->output = realloc(l->output,
-                                l->batch*out_h * out_w * l->n*sizeof(float));
+            l->batch*out_h * out_w * l->n*sizeof(float));
     l->delta  = realloc(l->delta,
-                                l->batch*out_h * out_w * l->n*sizeof(float));
+            l->batch*out_h * out_w * l->n*sizeof(float));
 
-    #ifdef GPU
+#ifdef GPU
     cuda_free(l->col_image_gpu);
     cuda_free(l->delta_gpu);
     cuda_free(l->output_gpu);
 
     l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
-    l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
-    l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
-    #endif
+    l->delta_gpu =     cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
+    l->output_gpu =    cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
+#endif
 }
 
-void bias_output(float *output, float *biases, int batch, int n, int size)
+void add_bias(float *output, float *biases, int batch, int n, int size)
 {
     int i,j,b;
     for(b = 0; b < batch; ++b){
         for(i = 0; i < n; ++i){
             for(j = 0; j < size; ++j){
-                output[(b*n + i)*size + j] = biases[i];
+                output[(b*n + i)*size + j] += biases[i];
+            }
+        }
+    }
+}
+
+void scale_bias(float *output, float *scales, int batch, int n, int size)
+{
+    int i,j,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] *= scales[i];
             }
         }
     }
@@ -144,14 +295,13 @@
     }
 }
 
-
 void forward_convolutional_layer(const convolutional_layer l, network_state state)
 {
     int out_h = convolutional_out_height(l);
     int out_w = convolutional_out_width(l);
     int i;
 
-    bias_output(l.output, l.biases, l.batch, l.n, out_h*out_w);
+    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
 
     int m = l.n;
     int k = l.size*l.size*l.c;
@@ -163,11 +313,24 @@
 
     for(i = 0; i < l.batch; ++i){
         im2col_cpu(state.input, l.c, l.h, l.w, 
-            l.size, l.stride, l.pad, b);
+                l.size, l.stride, l.pad, b);
         gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
         c += n*m;
         state.input += l.c*l.h*l.w;
     }
+
+    if(l.batch_normalize){
+        if(state.train){
+            mean_cpu(l.output, l.batch, l.n, l.out_h*l.out_w, l.mean);   
+            variance_cpu(l.output, l.mean, l.batch, l.n, l.out_h*l.out_w, l.variance);   
+            normalize_cpu(l.output, l.mean, l.variance, l.batch, l.n, l.out_h*l.out_w);   
+        } else {
+            normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.n, l.out_h*l.out_w);
+        }
+        scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
+    }
+    add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
+
     activate_array(l.output, m*n*l.batch, l.activation);
 }
 
@@ -182,8 +345,6 @@
     gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
     backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
 
-    if(state.delta) memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float));
-
     for(i = 0; i < l.batch; ++i){
         float *a = l.delta + i*m*k;
         float *b = l.col_image;
@@ -238,12 +399,26 @@
     }
 }
 
+void rescale_filters(convolutional_layer l, float scale, float trans)
+{
+    int i;
+    for(i = 0; i < l.n; ++i){
+        image im = get_convolutional_filter(l, i);
+        if (im.c == 3) {
+            scale_image(im, scale);
+            float sum = sum_array(im.data, im.w*im.h*im.c);
+            l.biases[i] += sum*trans;
+        }
+    }
+}
+
 image *get_filters(convolutional_layer l)
 {
     image *filters = calloc(l.n, sizeof(image));
     int i;
     for(i = 0; i < l.n; ++i){
         filters[i] = copy_image(get_convolutional_filter(l, i));
+        //normalize_image(filters[i]);
     }
     return filters;
 }

--
Gitblit v1.10.0