From e4323274f2ab75a6813e259f852ee3d8cf335fa5 Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Thu, 10 Aug 2017 09:54:53 +0000
Subject: [PATCH] Update Readme.md

---
 README.md |  127 +++++++++++++++++++++++-------------------
 1 files changed, 70 insertions(+), 57 deletions(-)

diff --git a/README.md b/README.md
index 3693421..68a8770 100644
--- a/README.md
+++ b/README.md
@@ -1,13 +1,14 @@
-# Yolo-Windows v2
+# Yolo-v2 Windows and Linux version
 
 1. [How to use](#how-to-use)
-2. [How to compile](#how-to-compile)
-3. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
-4. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
-5. [When should I stop training](#when-should-i-stop-training)
-6. [How to improve object detection](#how-to-improve-object-detection)
-7. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
-8. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
+2. [How to compile on Linux](#how-to-compile-on-linux)
+3. [How to compile on Windows](#how-to-compile-on-windows)
+4. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
+5. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
+6. [When should I stop training](#when-should-i-stop-training)
+7. [How to improve object detection](#how-to-improve-object-detection)
+8. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
+9. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
 
 |  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) | &nbsp; ![map_fps](https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg) https://arxiv.org/abs/1612.08242 |
 |---|---|
@@ -17,27 +18,33 @@
 
 
 # "You Only Look Once: Unified, Real-Time Object Detection (version 2)"
-A yolo windows version (for object detection)
-
-Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
+A Yolo cross-platform Windows and Linux version (for object detection). Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
 
 This repository is forked from Linux-version: https://github.com/pjreddie/darknet
 
 More details: http://pjreddie.com/darknet/yolo/
 
+This repository supports:
+
+* both Windows and Linux
+* both OpenCV 3.x and OpenCV 2.4.13
+* both cuDNN 5 and cuDNN 6
+* CUDA >= 7.5
+* also create SO-library on Linux and DLL-library on Windows
+
 ##### Requires: 
-* **MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409  (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409))
-* **CUDA 8.0 for Windows x64**: https://developer.nvidia.com/cuda-downloads
-* **OpenCV 2.4.9**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe/download
-  - To compile without OpenCV - remove define OPENCV from: Visual Studio->Project->Properties->C/C++->Preprocessor
-  - To compile with different OpenCV version - change in file yolo.c each string look like **#pragma comment(lib, "opencv_core249.lib")** from 249 to required version.
-  - With OpenCV will show image or video detection in window and store result to: test_dnn_out.avi
+* **Linux GCC>=4.9 or Windows MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409  (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409))
+* **CUDA 8.0**: https://developer.nvidia.com/cuda-downloads
+* **OpenCV 3.x**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.2.0/opencv-3.2.0-vc14.exe/download
+* **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download
+  - OpenCV allows to show image or video detection in the window and store result to file: test_dnn_out.avi
 
 ##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality):
 * `yolo.cfg` (256 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights
 * `yolo-voc.cfg` (256 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
 * `tiny-yolo.cfg` (60 MB COCO-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo.weights
 * `tiny-yolo-voc.cfg` (60 MB VOC-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights
+* `yolo9000.cfg` (186 MB Yolo9000-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
 
 Put it near compiled: darknet.exe
 
@@ -90,33 +97,39 @@
 * 256 MB COCO-model: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
 * 256 MB VOC-model: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
 
+### How to compile on Linux:
 
-### How to compile:
+Just do `make` in the darknet directory.
+Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
+* `GPU=1` to build with CUDA to accelerate by using GPU
+* `CUDNN=1` to build with cuDNN v5/v6 to accelerate training by using GPU
+* `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
+* `DEBUG=1` to bould debug version of Yolo
+* `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
+* `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
 
-1. If you have MSVS 2015, CUDA 8.0 and OpenCV 2.4.9 (with paths: `C:\opencv_2.4.9\opencv\build\include` & `C:\opencv_2.4.9\opencv\build\x64\vc12\lib` or `vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
 
-  1.1. Find files `opencv_core249.dll`, `opencv_highgui249.dll` and `opencv_ffmpeg249_64.dll` in `C:\opencv_2.4.9\opencv\build\x64\vc12\bin` or `vc14\bin` and put it near with `darknet.exe`
+### How to compile on Windows:
 
-2. If you have other version of CUDA (not 8.0) then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
+1. If you have **MSVS 2015, CUDA 8.0 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
 
-3. If you have other version of OpenCV 2.4.x (not 2.4.9) then you should change pathes after `\darknet.sln` is opened
+    1.1. Find files `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` in `C:\opencv_3.0\opencv\build\x64\vc14\bin` and put it near with `darknet.exe`
 
-  3.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories
+2. If you have other version of **CUDA (not 8.0)** then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
+
+3. If you **don't have GPU**, but have **MSVS 2015 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet_no_gpu.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
+
+4. If you have **OpenCV 2.4.13** instead of 3.0 then you should change pathes after `\darknet.sln` is opened
+
+    4.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories:  `C:\opencv_2.4.13\opencv\build\include`
   
-  3.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories
+    4.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories: `C:\opencv_2.4.13\opencv\build\x64\vc14\lib`
   
-  3.3 Open file: `\src\yolo.c` and change 3 lines to your OpenCV-version - `249` (for 2.4.9), `2413` (for 2.4.13), ... : 
+5. If you have other version of OpenCV 2.4.x (not 3.x) then you also should change lines like `#pragma comment(lib, "opencv_core2413.lib")` in the file `\src\detector.c`
 
-    * `#pragma comment(lib, "opencv_core249.lib")`
-    * `#pragma comment(lib, "opencv_imgproc249.lib")`
-    * `#pragma comment(lib, "opencv_highgui249.lib")` 
-
-
-4. If you have other version of OpenCV 3.x (not 2.4.x) then you should change many places in code by yourself.
-
-5. If you want to build with CUDNN to speed up then:
+6. If you want to build with CUDNN to speed up then:
       
-    * download and install **cuDNN 5.1 for CUDA 8.0**: https://developer.nvidia.com/cudnn
+    * download and install **cuDNN 6.0 for CUDA 8.0**: https://developer.nvidia.com/cudnn
       
     * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg
       
@@ -124,37 +137,34 @@
 
 ### How to compile (custom):
 
-Also, you can to create your own `darknet.sln` & `darknet.vcxproj`, this example for CUDA 8.0 and OpenCV 2.4.9
+Also, you can to create your own `darknet.sln` & `darknet.vcxproj`, this example for CUDA 8.0 and OpenCV 3.0
 
 Then add to your created project:
 - (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories, put here: 
 
-`C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
+`C:\opencv_3.0\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
 - (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
 - add to project all .c & .cu files from `\src`
 - (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here: 
 
-`C:\opencv_2.4.9\opencv\build\x64\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
+`C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
 -  (right click on project) -> properties  -> Linker -> Input -> Additional dependecies, put here: 
 
 `..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)`
 - (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
 
-`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
+`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
 
-- open file: `\src\yolo.c` and change 3 lines to your OpenCV-version - `249` (for 2.4.9), `2413` (for 2.4.13), ... : 
-
-    * `#pragma comment(lib, "opencv_core249.lib")`
-    * `#pragma comment(lib, "opencv_imgproc249.lib")`
-    * `#pragma comment(lib, "opencv_highgui249.lib")` 
+- open file: `\src\detector.c` and check lines `#pragma` and `#inclue` for OpenCV.
 
 - compile to .exe (X64 & Release) and put .dll-s near with .exe:
 
-`pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
+    * `pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
 
-`cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll` - 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
+    * `cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll` - 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
 
-`opencv_core249.dll`, `opencv_highgui249.dll` and `opencv_ffmpeg249_64.dll` in `C:\opencv_2.4.9\opencv\build\x64\vc12\bin` or `vc14\bin`
+    * For OpenCV 3.0: `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` from `C:\opencv_3.0\opencv\build\x64\vc14\bin` 
+    * For OpenCV 2.4.13: `opencv_core249.dll`, `opencv_highgui249.dll` and `opencv_ffmpeg249_64.dll` from  `C:\opencv_2.4.9\opencv\build\x64\vc14\bin`
 
 ## How to train (Pascal VOC Data):
 
@@ -173,7 +183,7 @@
 
 5. Run command: `type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt`
 
-6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.2.0.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.cfg#L3)
+6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.2.0.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
 
 7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
 
@@ -193,10 +203,10 @@
 
 1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.2.0.cfg` (or copy `yolo-voc.2.0.cfg` to `yolo-obj.cfg)` and:
 
-  * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.cfg#L3)
-  * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.cfg#L4)
+  * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
+  * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L3)
   * change line `classes=20` to your number of objects
-  * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.cfg#L237) to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
+  * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to `filters=(classes + 5)*5` (generally this depends on the `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`)
 
   For example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.2.0.cfg` in such lines:
 
@@ -313,16 +323,16 @@
 ## How to improve object detection:
 
 1. Before training:
-  * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link](https://github.com/AlexeyAB/darknet/blob/47409529d0eb935fa7bafbe2b3484431117269f5/cfg/yolo-voc.cfg#L244)
+  * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link]https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L244)
   
   * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides
 
 2. After training - for detection:
 
-  * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/47409529d0eb935fa7bafbe2b3484431117269f5/cfg/yolo-voc.cfg#L4)
+  * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L4)
   
     * you do not need to train the network again, just use `.weights`-file already trained for 416x416 resolution
-    * if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/47409529d0eb935fa7bafbe2b3484431117269f5/cfg/yolo-voc.cfg#L3)
+    * if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L3)
 
 ## How to mark bounded boxes of objects and create annotation files:
 
@@ -343,19 +353,22 @@
     * after launching your console application and entering the image file name - you will see info for each object: 
     `<obj_id> <left_x> <top_y> <width> <height> <probability>`
     * to use simple OpenCV-GUI you should uncomment line `//#define OPENCV` in `yolo_console_dll.cpp`-file: [link](https://github.com/AlexeyAB/darknet/blob/a6cbaeecde40f91ddc3ea09aa26a03ab5bbf8ba8/src/yolo_console_dll.cpp#L5)
+    * you can see source code of simple example for detection on the video file: [link](https://github.com/AlexeyAB/darknet/blob/ab1c5f9e57b4175f29a6ef39e7e68987d3e98704/src/yolo_console_dll.cpp#L75)
    
-`yolo_cpp_dll.dll`-API: [link](https://github.com/AlexeyAB/darknet/blob/master/src/yolo_v2_class.hpp#L31)
+`yolo_cpp_dll.dll`-API: [link](https://github.com/AlexeyAB/darknet/blob/master/src/yolo_v2_class.hpp#L42)
 ```
 class Detector {
 public:
 	Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
 	~Detector();
 
-	std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2);
-	std::vector<bbox_t> detect(image_t img, float thresh = 0.2);
+	std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
+	std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
+	static image_t load_image(std::string image_filename);
+	static void free_image(image_t m);
 
 #ifdef OPENCV
-	std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2);
+	std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false);
 #endif
 };
 ```

--
Gitblit v1.10.0