From e47b3c6a5b560cec3fa45dfc7bc04df5f461ecb1 Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Thu, 29 Mar 2018 22:51:02 +0000
Subject: [PATCH] Update Readme.md

---
 README.md |  479 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 474 insertions(+), 5 deletions(-)

diff --git a/README.md b/README.md
index d255dab..0830e12 100644
--- a/README.md
+++ b/README.md
@@ -1,8 +1,477 @@
-![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png)
+# Yolo-v3 and Yolo-v2 for Windows and Linux
+### (neural network for object detection)
 
-#Darknet#
-Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.
+[![CircleCI](https://circleci.com/gh/AlexeyAB/darknet.svg?style=svg)](https://circleci.com/gh/AlexeyAB/darknet)
 
-For more information see the [Darknet project website](http://pjreddie.com/darknet).
+1. [How to use](#how-to-use)
+2. [How to compile on Linux](#how-to-compile-on-linux)
+3. [How to compile on Windows](#how-to-compile-on-windows)
+4. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
+5. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
+6. [When should I stop training](#when-should-i-stop-training)
+7. [How to calculate mAP on PascalVOC 2007](#how-to-calculate-map-on-pascalvoc-2007)
+8. [How to improve object detection](#how-to-improve-object-detection)
+9. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
+10. [Using Yolo9000](#using-yolo9000)
+11. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
 
-For questions or issues please use the [Google Group](https://groups.google.com/forum/#!forum/darknet).
+
+
+|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) | &nbsp; ![map_fps](https://hsto.org/webt/pw/zd/0j/pwzd0jb9g7znt_dbsyw9qzbnvti.jpeg) https://pjreddie.com/media/files/papers/YOLOv3.pdf |
+|---|---|
+
+* Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg
+* Yolo v2 on Pascal VOC 2012 (comp4): https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg
+
+
+# "You Only Look Once: Unified, Real-Time Object Detection (versions 2 & 3)"
+A Yolo cross-platform Windows and Linux version (for object detection). Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
+
+This repository is forked from Linux-version: https://github.com/pjreddie/darknet
+
+More details: http://pjreddie.com/darknet/yolo/
+
+This repository supports:
+
+* both Windows and Linux
+* both OpenCV 2.x.x and OpenCV <= 3.4.0 (3.4.1 and higher isn't supported)
+* both cuDNN v5-v7
+* CUDA >= 7.5
+* also create SO-library on Linux and DLL-library on Windows
+
+##### Requires: 
+* **Linux GCC>=4.9 or Windows MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409  (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409))
+* **CUDA 9.1**: https://developer.nvidia.com/cuda-downloads
+* **OpenCV 3.4.0**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.4.0/opencv-3.4.0-vc14_vc15.exe/download
+* **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download
+  - OpenCV allows to show image or video detection in the window and store result to file that specified in command line `-out_filename res.avi`
+* **GPU with CC >= 2.0** if you use CUDA, or **GPU CC >= 3.0** if you use cuDNN + CUDA: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
+
+##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality):
+* `yolov3.cfg` (236 MB COCO **Yolo v3**) - require 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3.weights
+* `yolov2.cfg` (194 MB COCO Yolo v2) - require 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights
+* `yolo-voc.cfg` (194 MB VOC Yolo v2) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
+* `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - require 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights
+* `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights
+* `yolo9000.cfg` (186 MB Yolo9000-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
+
+Put it near compiled: darknet.exe
+
+You can get cfg-files by path: `darknet/cfg/`
+
+##### Examples of results:
+
+[![Everything Is AWESOME](http://img.youtube.com/vi/VOC3huqHrss/0.jpg)](https://www.youtube.com/watch?v=VOC3huqHrss "Everything Is AWESOME")
+
+Others: https://www.youtube.com/channel/UC7ev3hNVkx4DzZ3LO19oebg
+
+### How to use:
+
+##### Example of usage in cmd-files from `build\darknet\x64\`:
+
+* `darknet_yolo_v3.cmd` - initialization with 236 MB **Yolo v3** COCO-model yolov3.weights & yolov3.cfg and show detection on the image: dog.jpg
+
+* `darknet_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
+* `darknet_demo_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4
+* `darknet_demo_store.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: res.avi
+* `darknet_net_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone)
+* `darknet_web_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from Web-Camera number #0
+* `darknet_coco_9000.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the image: dog.jpg
+* `darknet_coco_9000_demo.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the video (if it is present): street4k.mp4, and store result to: res.avi
+
+##### How to use on the command line:
+
+On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights`
+
+* 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
+* Alternative method 194 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
+* 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
+* 194 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
+* 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
+* 194 MB COCO-model - **save result to the file res.avi**: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0 -out_filename res.avi`
+* 194 MB VOC-model - **save result to the file res.avi**: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0 -out_filename res.avi`
+* Alternative method 194 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
+* 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0`
+* 194 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
+* 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights`
+* 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4`
+* Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app
+* To process a list of images `data/train.txt` and save results of detection to `result.txt` use:                             
+    `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -dont_show < data/train.txt > result.txt`
+    You can comment this line so that each image does not require pressing the button ESC: https://github.com/AlexeyAB/darknet/blob/6ccb41808caf753feea58ca9df79d6367dedc434/src/detector.c#L509
+
+##### For using network video-camera mjpeg-stream with any Android smartphone:
+
+1. Download for Android phone mjpeg-stream soft: IP Webcam / Smart WebCam
+
+
+    * Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam2
+    * IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
+
+2. Connect your Android phone to computer by WiFi (through a WiFi-router) or USB
+3. Start Smart WebCam on your phone
+4. Replace the address below, on shown in the phone application (Smart WebCam) and launch:
+
+
+* 194 MB COCO-model: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB VOC-model: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+
+### How to compile on Linux:
+
+Just do `make` in the darknet directory.
+Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
+* `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`)
+* `CUDNN=1` to build with cuDNN v5-v7 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
+* `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
+* `DEBUG=1` to bould debug version of Yolo
+* `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
+* `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. Or you can try to run so `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4` How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
+
+
+### How to compile on Windows:
+
+1. If you have **MSVS 2015, CUDA 9.1, cuDNN 7.0 and OpenCV 3.x** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet. **NOTE:** If installing OpenCV, use OpenCV 3.4.0 or earlier. This is a bug in OpenCV 3.4.1 in the C API (see [#500](https://github.com/AlexeyAB/darknet/issues/500)).
+
+    1.1. Find files `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` (or `opencv_world340.dll` and `opencv_ffmpeg340_64.dll`) in `C:\opencv_3.0\opencv\build\x64\vc14\bin` and put it near with `darknet.exe`
+    
+    1.2 Check that there are `bin` and `include` folders in the `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1` if aren't, then copy them to this folder from the path where is CUDA installed
+    
+    1.3. To install CUDNN (speedup neural network), do the following:
+      
+    * download and install **cuDNN 7.0 for CUDA 9.1**: https://developer.nvidia.com/cudnn
+      
+    * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg
+    
+    1.4. If you want to build **without CUDNN** then: open `\darknet.sln` -> (right click on project) -> properties  -> C/C++ -> Preprocessor -> Preprocessor Definitions, and remove this: `CUDNN;`
+
+2. If you have other version of **CUDA (not 9.1)** then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 9.1" and change it to your CUDA-version, then do step 1
+
+3. If you **don't have GPU**, but have **MSVS 2015 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet_no_gpu.sln`, set **x64** and **Release**, and do the: Build -> Build darknet_no_gpu
+
+4. If you have **OpenCV 2.4.13** instead of 3.0 then you should change pathes after `\darknet.sln` is opened
+
+    4.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories:  `C:\opencv_2.4.13\opencv\build\include`
+  
+    4.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories: `C:\opencv_2.4.13\opencv\build\x64\vc14\lib`
+    
+
+### How to compile (custom):
+
+Also, you can to create your own `darknet.sln` & `darknet.vcxproj`, this example for CUDA 9.1 and OpenCV 3.0
+
+Then add to your created project:
+- (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories, put here: 
+
+`C:\opencv_3.0\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
+- (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 9.1 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
+- add to project all .c & .cu files from `\src`
+- (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here: 
+
+`C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
+-  (right click on project) -> properties  -> Linker -> Input -> Additional dependecies, put here: 
+
+`..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)`
+- (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
+
+`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
+
+- compile to .exe (X64 & Release) and put .dll-s near with .exe:
+
+    * `pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
+
+    * `cusolver64_91.dll, curand64_91.dll, cudart64_91.dll, cublas64_91.dll` - 91 for CUDA 9.1 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\bin
+
+    * For OpenCV 3.2: `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` from `C:\opencv_3.0\opencv\build\x64\vc14\bin` 
+    * For OpenCV 2.4.13: `opencv_core2413.dll`, `opencv_highgui2413.dll` and `opencv_ffmpeg2413_64.dll` from  `C:\opencv_2.4.13\opencv\build\x64\vc14\bin`
+
+## How to train (Pascal VOC Data):
+
+1. Download pre-trained weights for the convolutional layers (154 MB): http://pjreddie.com/media/files/darknet53.conv.74 and put to the directory `build\darknet\x64`
+
+2. Download The Pascal VOC Data and unpack it to directory `build\darknet\x64\data\voc` will be created dir `build\darknet\x64\data\voc\VOCdevkit\`:
+    * http://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
+    * http://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
+    * http://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
+    
+    2.1 Download file `voc_label.py` to dir `build\darknet\x64\data\voc`: http://pjreddie.com/media/files/voc_label.py
+
+3. Download and install Python for Windows: https://www.python.org/ftp/python/3.5.2/python-3.5.2-amd64.exe
+
+4. Run command: `python build\darknet\x64\data\voc\voc_label.py` (to generate files: 2007_test.txt, 2007_train.txt, 2007_val.txt, 2012_train.txt, 2012_val.txt)
+
+5. Run command: `type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt`
+
+6. Set `batch=64` and `subdivisions=8` in the file `yolov3-voc.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/ee38c6e1513fb089b35be4ffa692afd9b3f65747/cfg/yolov3-voc.cfg#L3-L4)
+
+7. Start training by using `train_voc.cmd` or by using the command line: 
+
+    `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg darknet53.conv.74` 
+
+(**Note:** To disable Loss-Window use flag `-dont_show`. If you are using CPU, try `darknet_no_gpu.exe` instead of `darknet.exe`.)
+
+If required change pathes in the file `build\darknet\x64\data\voc.data`
+
+More information about training by the link: http://pjreddie.com/darknet/yolo/#train-voc
+
+## How to train with multi-GPU:
+
+1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg darknet53.conv.74`
+
+2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg /backup/yolo-voc_1000.weights -gpus 0,1,2,3`
+
+https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
+
+## How to train (to detect your custom objects):
+
+1. Create file `yolo-obj.cfg` with the same content as in `yolov3.cfg` (or copy `yolov3.cfg` to `yolo-obj.cfg)` and:
+
+  * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L3)
+  * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
+  * change line `classes=80` to your number of objects in each of 3 `[yolo]`-layers:
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L610
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L696
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L783
+  * change [`filters=255`] to filters=(classes + 5)x3 in the 3 `[convolutional]` before each `[yolo]` layer
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L603
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L689
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L776
+
+  So if `classes=1` then should be `filters=18`. If `classes=2` then write `filters=31`.
+  
+  **(Do not write in the cfg-file: filters=(classes + 5)x3)**
+  
+  (Generally `filters` depends on the `classes`, `coords` and number of `mask`s, i.e. filters=`(classes + coords + 1)*<number of mask>`, where `mask` is indices of anchors. If `mask` is absence, then filters=`(classes + coords + 1)*num`)
+
+  So for example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolov3.cfg` in such lines in each of **3** [yolo]-layers:
+
+  ```
+  [convolutional]
+  filters=21
+
+  [region]
+  classes=2
+  ```
+
+2. Create file `obj.names` in the directory `build\darknet\x64\data\`, with objects names - each in new line
+
+3. Create file `obj.data` in the directory `build\darknet\x64\data\`, containing (where **classes = number of objects**):
+
+  ```
+  classes= 2
+  train  = data/train.txt
+  valid  = data/test.txt
+  names = data/obj.names
+  backup = backup/
+  ```
+
+4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\`
+
+5. Create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
+
+  Where: 
+  * `<object-class>` - integer number of object from `0` to `(classes-1)`
+  * `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from 0.0 to 1.0 
+  * for example: `<x> = <absolute_x> / <image_width>` or `<height> = <absolute_height> / <image_height>`
+  * atention: `<x> <y>` - are center of rectangle (are not top-left corner)
+
+  For example for `img1.jpg` you should create `img1.txt` containing:
+
+  ```
+  1 0.716797 0.395833 0.216406 0.147222
+  0 0.687109 0.379167 0.255469 0.158333
+  1 0.420312 0.395833 0.140625 0.166667
+  ```
+
+6. Create file `train.txt` in directory `build\darknet\x64\data\`, with filenames of your images, each filename in new line, with path relative to `darknet.exe`, for example containing:
+
+  ```
+  data/obj/img1.jpg
+  data/obj/img2.jpg
+  data/obj/img3.jpg
+  ```
+
+7. Download pre-trained weights for the convolutional layers (154 MB): https://pjreddie.com/media/files/darknet53.conv.74 and put to the directory `build\darknet\x64`
+
+8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74`
+
+    (file `yolo-obj_xxx.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations)
+    (To disable Loss-Window use `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -dont_show`, if you train on computer without monitor like a cloud Amazaon EC2)
+
+9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\`
+
+ * After each 1000 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights`
+
+ * Also you can get result earlier than all 45000 iterations.
+ 
+### How to train tiny-yolo (to detect your custom objects):
+
+Do all the same steps as for the full yolo model as described above. With the exception of:
+* Download default weights file for tiny-yolo-voc: http://pjreddie.com/media/files/tiny-yolo-voc.weights
+* Get pre-trained weights tiny-yolo-voc.conv.13 using command: `darknet.exe partial cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights tiny-yolo-voc.conv.13 13`
+* Make your custom model `tiny-yolo-obj.cfg` based on `tiny-yolo-voc.cfg` instead of `yolo-voc.2.0.cfg`
+* Start training: `darknet.exe detector train data/obj.data tiny-yolo-obj.cfg tiny-yolo-voc.conv.13`
+
+For training Yolo based on other models ([DenseNet201-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/densenet201_yolo.cfg) or [ResNet50-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/resnet50_yolo.cfg)), you can download and get pre-trained weights as showed in this file: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/partial.cmd
+If you made you custom model that isn't based on other models, then you can train it without pre-trained weights, then will be used random initial weights.
+ 
+## When should I stop training:
+
+Usually sufficient 2000 iterations for each class(object). But for a more precise definition when you should stop training, use the following manual:
+
+1. During training, you will see varying indicators of error, and you should stop when no longer decreases **0.XXXXXXX avg**:
+
+  > Region Avg IOU: 0.798363, Class: 0.893232, Obj: 0.700808, No Obj: 0.004567, Avg Recall: 1.000000,  count: 8
+  > Region Avg IOU: 0.800677, Class: 0.892181, Obj: 0.701590, No Obj: 0.004574, Avg Recall: 1.000000,  count: 8
+  >
+  > **9002**: 0.211667, **0.060730 avg**, 0.001000 rate, 3.868000 seconds, 576128 images
+  > Loaded: 0.000000 seconds
+
+  * **9002** - iteration number (number of batch)
+  * **0.060730 avg** - average loss (error) - **the lower, the better**
+
+  When you see that average loss **0.xxxxxx avg** no longer decreases at many iterations then you should stop training.
+
+2. Once training is stopped, you should take some of last `.weights`-files from `darknet\build\darknet\x64\backup` and choose the best of them:
+
+For example, you stopped training after 9000 iterations, but the best result can give one of previous weights (7000, 8000, 9000). It can happen due to overfitting. **Overfitting** - is case when you can detect objects on images from training-dataset, but can't detect ojbects on any others images. You should get weights from **Early Stopping Point**:
+
+![Overfitting](https://hsto.org/files/5dc/7ae/7fa/5dc7ae7fad9d4e3eb3a484c58bfc1ff5.png) 
+
+To get weights from Early Stopping Point:
+
+  2.1. At first, in your file `obj.data` you must specify the path to the validation dataset `valid = valid.txt` (format of `valid.txt` as in `train.txt`), and if you haven't validation images, just copy `data\train.txt` to `data\valid.txt`.
+
+  2.2 If training is stopped after 9000 iterations, to validate some of previous weights use this commands:
+
+(If you use another GitHub repository, then use `darknet.exe detector recall`... instead of `darknet.exe detector map`...)
+
+* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights`
+* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_8000.weights`
+* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_9000.weights`
+
+And comapre last output lines for each weights (7000, 8000, 9000):
+
+Choose weights-file **with the highest IoU** (intersect of union) and mAP (mean average precision)
+
+For example, **bigger IOU** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
+
+Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
+
+* **IoU** (intersect of union) - average instersect of union of objects and detections for a certain threshold = 0.24
+
+* **mAP** (mean average precision) - mean value of `average precisions` for each class, where `average precision` is average value of 11 points on PR-curve for each possible threshold (each probability of detection) for the same class (Precision-Recall in terms of PascalVOC, where Precision=TP/(TP+FP) and Recall=TP/(TP+FN) ), page-11: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
+
+In terms of Wiki, indicators Precision and Recall have a slightly different meaning than in the PascalVOC competition, but **IoU always has the same meaning**.
+
+![precision_recall_iou](https://hsto.org/files/ca8/866/d76/ca8866d76fb840228940dbf442a7f06a.jpg)
+
+### How to calculate mAP on PascalVOC 2007:
+
+1. To calculate mAP (mean average precision) on PascalVOC-2007-test:
+* Download PascalVOC dataset, install Python 3.x and get file `2007_test.txt` as described here: https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data
+* Then download file https://raw.githubusercontent.com/AlexeyAB/darknet/master/scripts/voc_label_difficult.py to the dir `build\darknet\x64\data\` then run `voc_label_difficult.py` to get the file `difficult_2007_test.txt`
+* Remove symbol `#` from this line to un-comment it: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/data/voc.data#L4
+* Then there are 2 ways to get mAP:
+    1. Using Darknet + Python: run the file `build/darknet/x64/calc_mAP_voc_py.cmd` - you will get mAP for `yolo-voc.cfg` model, mAP = 75.9%
+    2. Using this fork of Darknet: run the file `build/darknet/x64/calc_mAP.cmd` - you will get mAP for `yolo-voc.cfg` model, mAP = 75.8%
+    
+ (The article specifies the value of mAP = 76.8% for YOLOv2 416×416, page-4 table-3: https://arxiv.org/pdf/1612.08242v1.pdf. We get values lower - perhaps due to the fact that the model was trained on a slightly different source code than the code on which the detection is was done)
+
+* if you want to get mAP for `tiny-yolo-voc.cfg` model, then un-comment line for tiny-yolo-voc.cfg and comment line for yolo-voc.cfg in the .cmd-file
+* if you have Python 2.x instead of Python 3.x, and if you use Darknet+Python-way to get mAP, then in your cmd-file use `reval_voc.py` and `voc_eval.py` instead of `reval_voc_py3.py` and `voc_eval_py3.py` from this directory: https://github.com/AlexeyAB/darknet/tree/master/scripts
+
+### Custom object detection:
+
+Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
+
+| ![Yolo_v2_training](https://hsto.org/files/d12/1e7/515/d121e7515f6a4eb694913f10de5f2b61.jpg) | ![Yolo_v2_training](https://hsto.org/files/727/c7e/5e9/727c7e5e99bf4d4aa34027bb6a5e4bab.jpg) |
+|---|---|
+
+## How to improve object detection:
+
+1. Before training:
+  * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L788)
+
+  * increase network resolution in your `.cfg`-file (`height=608`, `width=608` or any value multiple of 32) - it will increase precision
+
+  * recalculate anchors for your dataset for `width` and `height` from cfg-file:
+  `darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -heigh 416`
+   then set the same 9 `anchors` in each of 3 `[yolo]`-layers in your cfg-file
+
+  * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides
+
+  * desirable that your training dataset include images with objects (without labels) that you do not want to detect - negative samples
+
+  * for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last layer [region] in your cfg-file
+  
+  * to speedup training (with decreasing detection accuracy) do Fine-Tuning instead of Transfer-Learning, set param `stopbackward=1` in one of the penultimate convolutional layers before the 1-st `[yolo]`-layer, for example here: https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L598
+
+2. After training - for detection:
+
+  * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L8-L9)
+  
+    * you do not need to train the network again, just use `.weights`-file already trained for 416x416 resolution
+    * if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
+
+## How to mark bounded boxes of objects and create annotation files:
+
+Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark
+
+With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2 & v3
+
+## Using Yolo9000
+
+ Simultaneous detection and classification of 9000 objects:
+
+* `yolo9000.weights` - (186 MB Yolo9000 Model) requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
+
+* `yolo9000.cfg` - cfg-file of the Yolo9000, also there are paths to the `9k.tree` and `coco9k.map`  https://github.com/AlexeyAB/darknet/blob/617cf313ccb1fe005db3f7d88dec04a04bd97cc2/cfg/yolo9000.cfg#L217-L218
+
+    * `9k.tree` - **WordTree** of 9418 categories  - `<label> <parent_it>`, if `parent_id == -1` then this label hasn't parent: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.tree
+
+    * `coco9k.map` - map 80 categories from MSCOCO to WordTree `9k.tree`: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/coco9k.map
+
+* `combine9k.data` - data file, there are paths to: `9k.labels`, `9k.names`, `inet9k.map`, (change path to your `combine9k.train.list`): https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/combine9k.data
+
+    * `9k.labels` - 9418 labels of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.labels
+
+    * `9k.names` -
+9418 names of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.names
+
+    * `inet9k.map` - map 200 categories from ImageNet to WordTree `9k.tree`: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/inet9k.map
+
+
+## How to use Yolo as DLL
+
+1. To compile Yolo as C++ DLL-file `yolo_cpp_dll.dll` - open in MSVS2015 file `build\darknet\yolo_cpp_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_cpp_dll
+    * You should have installed **CUDA 9.1**
+    * To use cuDNN do: (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
+
+2. To use Yolo as DLL-file in your C++ console application - open in MSVS2015 file `build\darknet\yolo_console_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_console_dll
+
+    * you can run your console application from Windows Explorer `build\darknet\x64\yolo_console_dll.exe`
+    * or you can run from MSVS2015 (before this - you should copy 2 files `yolo-voc.cfg` and `yolo-voc.weights` to the directory `build\darknet\` )
+    * after launching your console application and entering the image file name - you will see info for each object: 
+    `<obj_id> <left_x> <top_y> <width> <height> <probability>`
+    * to use simple OpenCV-GUI you should uncomment line `//#define OPENCV` in `yolo_console_dll.cpp`-file: [link](https://github.com/AlexeyAB/darknet/blob/a6cbaeecde40f91ddc3ea09aa26a03ab5bbf8ba8/src/yolo_console_dll.cpp#L5)
+    * you can see source code of simple example for detection on the video file: [link](https://github.com/AlexeyAB/darknet/blob/ab1c5f9e57b4175f29a6ef39e7e68987d3e98704/src/yolo_console_dll.cpp#L75)
+   
+`yolo_cpp_dll.dll`-API: [link](https://github.com/AlexeyAB/darknet/blob/master/src/yolo_v2_class.hpp#L42)
+```
+class Detector {
+public:
+	Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
+	~Detector();
+
+	std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
+	std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
+	static image_t load_image(std::string image_filename);
+	static void free_image(image_t m);
+
+#ifdef OPENCV
+	std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false);
+#endif
+};
+```

--
Gitblit v1.10.0