From e4ab47dfcedb4c87e5eddf484caa4ac0c020fc9b Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Wed, 21 Feb 2018 12:35:09 +0000
Subject: [PATCH] Optimized resizing of region_layer for random=1
---
README.md | 412 ++++++++++++++++++++++++++++++++++++++++++++++++++++------
1 files changed, 367 insertions(+), 45 deletions(-)
diff --git a/README.md b/README.md
index 458ca5a..ec8c19a 100644
--- a/README.md
+++ b/README.md
@@ -1,28 +1,55 @@
-
+# Yolo-v2 Windows and Linux version
-# Yolo-Windows v2
+[](https://circleci.com/gh/AlexeyAB/darknet)
+
+1. [How to use](#how-to-use)
+2. [How to compile on Linux](#how-to-compile-on-linux)
+3. [How to compile on Windows](#how-to-compile-on-windows)
+4. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
+5. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
+6. [When should I stop training](#when-should-i-stop-training)
+7. [How to calculate mAP on PascalVOC 2007](#how-to-calculate-map-on-pascalvoc-2007)
+8. [How to improve object detection](#how-to-improve-object-detection)
+9. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
+10. [Using Yolo9000](#using-yolo9000)
+11. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
+
+|  |  https://arxiv.org/abs/1612.08242 |
+|---|---|
+
+|  |  https://arxiv.org/abs/1612.08242 |
+|---|---|
+
+
# "You Only Look Once: Unified, Real-Time Object Detection (version 2)"
-A yolo windows version (for object detection)
-
-Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
+A Yolo cross-platform Windows and Linux version (for object detection). Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
This repository is forked from Linux-version: https://github.com/pjreddie/darknet
More details: http://pjreddie.com/darknet/yolo/
+This repository supports:
+
+* both Windows and Linux
+* both OpenCV 3.x and OpenCV 2.4.13
+* both cuDNN 5 and cuDNN 6
+* CUDA >= 7.5
+* also create SO-library on Linux and DLL-library on Windows
+
##### Requires:
-* **MS Visual Studio 2015 (v140)**: https://www.microsoft.com/download/details.aspx?id=48146
-* **CUDA 8.0 for Windows x64**: https://developer.nvidia.com/cuda-downloads
-* **OpenCV 2.4.9**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe/download
- - To compile without OpenCV - remove define OPENCV from: Visual Studio->Project->Properties->C/C++->Preprocessor
- - To compile with different OpenCV version - change in file yolo.c each string look like **#pragma comment(lib, "opencv_core249.lib")** from 249 to required version.
- - With OpenCV will show image or video detection in window
+* **Linux GCC>=4.9 or Windows MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409 (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409))
+* **CUDA 8.0**: https://developer.nvidia.com/cuda-downloads
+* **OpenCV 3.x**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.2.0/opencv-3.2.0-vc14.exe/download
+* **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download
+ - OpenCV allows to show image or video detection in the window and store result to file that specified in command line `-out_filename res.avi`
+* **GPU with CC >= 2.0** if you use CUDA, or **GPU CC >= 3.0** if you use cuDNN + CUDA: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality):
-* `yolo.cfg` (256 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights
-* `yolo-voc.cfg` (256 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
+* `yolo.cfg` (194 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights
+* `yolo-voc.cfg` (194 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
* `tiny-yolo.cfg` (60 MB COCO-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo.weights
* `tiny-yolo-voc.cfg` (60 MB VOC-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights
+* `yolo9000.cfg` (186 MB Yolo9000-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
Put it near compiled: darknet.exe
@@ -38,75 +65,370 @@
##### Example of usage in cmd-files from `build\darknet\x64\`:
-* `darknet_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
-* `darknet_demo_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4
-* `darknet_net_cam_voc.cmd` - initialization with 256 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone)
+* `darknet_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
+* `darknet_demo_voc.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4
+* `darknet_demo_store.cmd` - initialization with 194 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: res.avi
+* `darknet_net_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone)
+* `darknet_web_cam_voc.cmd` - initialization with 194 MB VOC-model, play video from Web-Camera number #0
+* `darknet_coco_9000.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the image: dog.jpg
+* `darknet_coco_9000_demo.cmd` - initialization with 186 MB Yolo9000 COCO-model, and show detection on the video (if it is present): street4k.mp4, and store result to: res.avi
##### How to use on the command line:
-* 256 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
-* Alternative method 256 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
-* 256 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
-* 256 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
-* 256 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
-* Alternative method 256 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
+
+On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolo.cfg ./yolo.weights`
+
+* 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
+* Alternative method 194 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
+* 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
+* 194 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
+* 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
+* 194 MB COCO-model - **save result to the file res.avi**: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0 -out_filename res.avi`
+* 194 MB VOC-model - **save result to the file res.avi**: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0 -out_filename res.avi`
+* Alternative method 194 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
* 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0`
-* 256 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
-* 256 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
+* 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights`
+* 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4`
+* Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app
+* To process a list of images `image_list.txt` and save results of detection to `result.txt` use:
+ `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights < image_list.txt > result.txt`
+ You can comment this line so that each image does not require pressing the button ESC: https://github.com/AlexeyAB/darknet/blob/6ccb41808caf753feea58ca9df79d6367dedc434/src/detector.c#L509
##### For using network video-camera mjpeg-stream with any Android smartphone:
1. Download for Android phone mjpeg-stream soft: IP Webcam / Smart WebCam
- Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam
- IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
+ * Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam2
+ * IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
2. Connect your Android phone to computer by WiFi (through a WiFi-router) or USB
3. Start Smart WebCam on your phone
4. Replace the address below, on shown in the phone application (Smart WebCam) and launch:
-* 256 MB COCO-model: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
-* 256 MB VOC-model: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB COCO-model: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 194 MB VOC-model: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+
+### How to compile on Linux:
+
+Just do `make` in the darknet directory.
+Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
+* `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`)
+* `CUDNN=1` to build with cuDNN v5/v6 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
+* `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
+* `DEBUG=1` to bould debug version of Yolo
+* `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
+* `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. Or you can try to run so `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4` How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
-### How to compile:
+### How to compile on Windows:
-1. If you have CUDA 8.0, OpenCV 2.4.9 (C:\opencv_2.4.9) and MSVS 2015 then start MSVS, open `build\darknet\darknet.sln` and do the: Build -> Build darknet
+1. If you have **MSVS 2015, CUDA 8.0 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet.sln`, set **x64** and **Release**, and do the: Build -> Build darknet
-2. If you have other version of CUDA (not 8.0) then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
+ 1.1. Find files `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` in `C:\opencv_3.0\opencv\build\x64\vc14\bin` and put it near with `darknet.exe`
-3. If you have other version of OpenCV 2.4.x (not 2.4.9) then you should change pathes after `\darknet.sln` is opened
+2. If you have other version of **CUDA (not 8.0)** then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
- 3.1 (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories
+3. If you **don't have GPU**, but have **MSVS 2015 and OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then start MSVS, open `build\darknet\darknet_no_gpu.sln`, set **x64** and **Release**, and do the: Build -> Build darknet_no_gpu
+
+4. If you have **OpenCV 2.4.13** instead of 3.0 then you should change pathes after `\darknet.sln` is opened
+
+ 4.1 (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories: `C:\opencv_2.4.13\opencv\build\include`
- 3.2 (right click on project) -> properties -> Linker -> General -> Additional Library Directories
-
-4. If you have other version of OpenCV 3.x (not 2.4.x) then you should change many places in code by yourself.
+ 4.2 (right click on project) -> properties -> Linker -> General -> Additional Library Directories: `C:\opencv_2.4.13\opencv\build\x64\vc14\lib`
+
+5. If you want to build with CUDNN to speed up then:
+
+ * download and install **cuDNN 6.0 for CUDA 8.0**: https://developer.nvidia.com/cudnn
+
+ * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg
+
+ * open `\darknet.sln` -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
### How to compile (custom):
-Also, you can to create your own `darknet.sln` & `darknet.vcxproj`, this example for CUDA 8.0 and OpenCV 2.4.9
+Also, you can to create your own `darknet.sln` & `darknet.vcxproj`, this example for CUDA 8.0 and OpenCV 3.0
Then add to your created project:
- (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories, put here:
-`C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
-- right click on project -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
+`C:\opencv_3.0\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
+- (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
- add to project all .c & .cu files from `\src`
-- (right click on project) -> properties -> Linker -> General -> Additional Library Directories, put here:
+- (right click on project) -> properties -> Linker -> General -> Additional Library Directories, put here:
-`C:\opencv_2.4.9\opencv\build\x64\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
+`C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
- (right click on project) -> properties -> Linker -> Input -> Additional dependecies, put here:
`..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)`
- (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
-`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
-- compile to .exe (X64 & Release) and put .dll`s near with .exe:
+`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
-`pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
+- compile to .exe (X64 & Release) and put .dll-s near with .exe:
-`cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll` - 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
+ * `pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
+
+ * `cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll` - 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
+
+ * For OpenCV 3.X: `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` from `C:\opencv_3.0\opencv\build\x64\vc14\bin`
+ * For OpenCV 2.4.13: `opencv_core2413.dll`, `opencv_highgui2413.dll` and `opencv_ffmpeg2413_64.dll` from `C:\opencv_2.4.13\opencv\build\x64\vc14\bin`
+
+## How to train (Pascal VOC Data):
+
+1. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64`
+
+2. Download The Pascal VOC Data and unpack it to directory `build\darknet\x64\data\voc` will be created dir `build\darknet\x64\data\voc\VOCdevkit\`:
+ * http://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
+ * http://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
+ * http://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
+
+ 2.1 Download file `voc_label.py` to dir `build\darknet\x64\data\voc`: http://pjreddie.com/media/files/voc_label.py
+
+3. Download and install Python for Windows: https://www.python.org/ftp/python/3.5.2/python-3.5.2-amd64.exe
+
+4. Run command: `python build\darknet\x64\data\voc\voc_label.py` (to generate files: 2007_test.txt, 2007_train.txt, 2007_val.txt, 2012_train.txt, 2012_val.txt)
+
+5. Run command: `type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt`
+
+6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.2.0.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
+
+7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23` (**Note:** If you are using CPU, try `darknet_no_gpu.exe` instead of `darknet.exe`.)
+
+If required change pathes in the file `build\darknet\x64\data\voc.data`
+
+More information about training by the link: http://pjreddie.com/darknet/yolo/#train-voc
+
+## How to train with multi-GPU:
+
+1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23`
+
+2. Then stop and by using partially-trained model `/backup/yolo-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg /backup/yolo-voc_1000.weights -gpus 0,1,2,3`
+
+https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
+
+## How to train (to detect your custom objects):
+
+1. Create file `yolo-obj.cfg` with the same content as in `yolo-voc.2.0.cfg` (or copy `yolo-voc.2.0.cfg` to `yolo-obj.cfg)` and:
+
+ * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2)
+ * change line subdivisions to [`subdivisions=8`](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L3)
+ * change line `classes=20` to your number of objects
+ * change line #237 from [`filters=125`](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L224) to: filters=(classes + 5)x5, so if `classes=2` then should be `filters=35`. Or if you use `classes=1` then write `filters=30`, **do not write in the cfg-file: filters=(classes + 5)x5**.
+
+ (Generally `filters` depends on the `classes`, `num` and `coords`, i.e. equal to `(classes + coords + 1)*num`, where `num` is number of anchors)
+
+ So for example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolo-voc.2.0.cfg` in such lines:
+
+ ```
+ [convolutional]
+ filters=35
+
+ [region]
+ classes=2
+ ```
+
+2. Create file `obj.names` in the directory `build\darknet\x64\data\`, with objects names - each in new line
+
+3. Create file `obj.data` in the directory `build\darknet\x64\data\`, containing (where **classes = number of objects**):
+
+ ```
+ classes= 2
+ train = data/train.txt
+ valid = data/test.txt
+ names = data/obj.names
+ backup = backup/
+ ```
+
+4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\`
+
+5. Create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: `<object-class> <x> <y> <width> <height>`
+
+ Where:
+ * `<object-class>` - integer number of object from `0` to `(classes-1)`
+ * `<x> <y> <width> <height>` - float values relative to width and height of image, it can be equal from 0.0 to 1.0
+ * for example: `<x> = <absolute_x> / <image_width>` or `<height> = <absolute_height> / <image_height>`
+ * atention: `<x> <y>` - are center of rectangle (are not top-left corner)
+
+ For example for `img1.jpg` you should create `img1.txt` containing:
+
+ ```
+ 1 0.716797 0.395833 0.216406 0.147222
+ 0 0.687109 0.379167 0.255469 0.158333
+ 1 0.420312 0.395833 0.140625 0.166667
+ ```
+
+6. Create file `train.txt` in directory `build\darknet\x64\data\`, with filenames of your images, each filename in new line, with path relative to `darknet.exe`, for example containing:
+
+ ```
+ data/obj/img1.jpg
+ data/obj/img2.jpg
+ data/obj/img3.jpg
+ ```
+
+7. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64`
+
+8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23`
+
+ (file `yolo-obj_xxx.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations)
+
+9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\`
+
+ * After each 1000 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights`
+
+ * Also you can get result earlier than all 45000 iterations.
+
+## When should I stop training:
+
+Usually sufficient 2000 iterations for each class(object). But for a more precise definition when you should stop training, use the following manual:
+
+1. During training, you will see varying indicators of error, and you should stop when no longer decreases **0.060730 avg**:
+
+ > Region Avg IOU: 0.798363, Class: 0.893232, Obj: 0.700808, No Obj: 0.004567, Avg Recall: 1.000000, count: 8
+ > Region Avg IOU: 0.800677, Class: 0.892181, Obj: 0.701590, No Obj: 0.004574, Avg Recall: 1.000000, count: 8
+ >
+ > **9002**: 0.211667, **0.060730 avg**, 0.001000 rate, 3.868000 seconds, 576128 images
+ > Loaded: 0.000000 seconds
+
+ * **9002** - iteration number (number of batch)
+ * **0.060730 avg** - average loss (error) - **the lower, the better**
+
+ When you see that average loss **0.xxxxxx avg** no longer decreases at many iterations then you should stop training.
+
+2. Once training is stopped, you should take some of last `.weights`-files from `darknet\build\darknet\x64\backup` and choose the best of them:
+
+For example, you stopped training after 9000 iterations, but the best result can give one of previous weights (7000, 8000, 9000). It can happen due to overfitting. **Overfitting** - is case when you can detect objects on images from training-dataset, but can't detect ojbects on any others images. You should get weights from **Early Stopping Point**:
+
+
+
+To get weights from Early Stopping Point:
+
+ 2.1. At first, in your file `obj.data` you must specify the path to the validation dataset `valid = valid.txt` (format of `valid.txt` as in `train.txt`), and if you haven't validation images, just copy `data\train.txt` to `data\valid.txt`.
+
+ 2.2 If training is stopped after 9000 iterations, to validate some of previous weights use this commands:
+
+(If you use another GitHub repository, then use `darknet.exe detector recall`... instead of `darknet.exe detector map`...)
+
+* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights`
+* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_8000.weights`
+* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_9000.weights`
+
+And comapre last output lines for each weights (7000, 8000, 9000):
+
+Choose weights-file **with the highest IoU** (intersect of union) and mAP (mean average precision)
+
+For example, **bigger IOU** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
+
+Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
+
+* **IoU** (intersect of union) - average instersect of union of objects and detections for a certain threshold = 0.24
+
+* **mAP** (mean average precision) - mean value of `average precisions` for each class, where `average precision` is average value of 11 points on PR-curve for each possible threshold (each probability of detection) for the same class (Precision-Recall in terms of PascalVOC, where Precision=TP/(TP+FP) and Recall=TP/(TP+FN) ), page-11: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
+
+In terms of Wiki, indicators Precision and Recall have a slightly different meaning than in the PascalVOC competition, but **IoU always has the same meaning**.
+
+
+
+### How to calculate mAP on PascalVOC 2007:
+
+1. To calculate mAP (mean average precision) on PascalVOC-2007-test:
+* Download PascalVOC dataset, install Python 3.x and get file `2007_test.txt` as described here: https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data
+* Then download file https://raw.githubusercontent.com/AlexeyAB/darknet/master/scripts/voc_label_difficult.py to the dir `build\darknet\x64\data\voc` then run `voc_label_difficult.py` to get the file `difficult_2007_test.txt`
+* Remove symbol `#` from this line to un-comment it: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/data/voc.data#L4
+* Then there are 2 ways to get mAP:
+ 1. Using Darknet + Python: run the file `build/darknet/x64/calc_mAP_voc_py.cmd` - you will get mAP for `yolo-voc.cfg` model, mAP = 75.9%
+ 2. Using this fork of Darknet: run the file `build/darknet/x64/calc_mAP.cmd` - you will get mAP for `yolo-voc.cfg` model, mAP = 75.8%
+
+ (The article specifies the value of mAP = 76.8% for YOLOv2 416×416, page-4 table-3: https://arxiv.org/pdf/1612.08242v1.pdf. We get values lower - perhaps due to the fact that the model was trained on a slightly different source code than the code on which the detection is was done)
+
+* if you want to get mAP for `tiny-yolo-voc.cfg` model, then un-comment line for tiny-yolo-voc.cfg and comment line for yolo-voc.cfg in the .cmd-file
+* if you have Python 2.x instead of Python 3.x, and if you use Darknet+Python-way to get mAP, then in your cmd-file use `reval_voc.py` and `voc_eval.py` instead of `reval_voc_py3.py` and `voc_eval_py3.py` from this directory: https://github.com/AlexeyAB/darknet/tree/master/scripts
+
+### Custom object detection:
+
+Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
+
+|  |  |
+|---|---|
+
+## How to improve object detection:
+
+1. Before training:
+ * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link]https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L244)
+
+ * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides
+
+ * for training on small objects, add the parameter `small_object=1` in the last layer [region] in your cfg-file
+
+ * for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last layer [region] in your cfg-file
+
+2. After training - for detection:
+
+ * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L4)
+
+ * you do not need to train the network again, just use `.weights`-file already trained for 416x416 resolution
+ * if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/master/cfg/yolo-voc.2.0.cfg#L3)
+
+## How to mark bounded boxes of objects and create annotation files:
+
+Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2: https://github.com/AlexeyAB/Yolo_mark
+
+With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2
+
+## Using Yolo9000
+
+ Simultaneous detection and classification of 9000 objects:
+
+* `yolo9000.weights` - (186 MB Yolo9000 Model) requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
+
+* `yolo9000.cfg` - cfg-file of the Yolo9000, also there are paths to the `9k.tree` and `coco9k.map` https://github.com/AlexeyAB/darknet/blob/617cf313ccb1fe005db3f7d88dec04a04bd97cc2/cfg/yolo9000.cfg#L217-L218
+
+ * `9k.tree` - **WordTree** of 9418 categories - `<label> <parent_it>`, if `parent_id == -1` then this label hasn't parent: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.tree
+
+ * `coco9k.map` - map 80 categories from MSCOCO to WordTree `9k.tree`: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/coco9k.map
+
+* `combine9k.data` - data file, there are paths to: `9k.labels`, `9k.names`, `inet9k.map`, (change path to your `combine9k.train.list`): https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/combine9k.data
+
+ * `9k.labels` - 9418 labels of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.labels
+
+ * `9k.names` -
+9418 names of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.names
+
+ * `inet9k.map` - map 200 categories from ImageNet to WordTree `9k.tree`: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/inet9k.map
+## How to use Yolo as DLL
+
+1. To compile Yolo as C++ DLL-file `yolo_cpp_dll.dll` - open in MSVS2015 file `build\darknet\yolo_cpp_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_cpp_dll
+ * You should have installed **CUDA 8.0**
+ * To use cuDNN do: (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
+
+2. To use Yolo as DLL-file in your C++ console application - open in MSVS2015 file `build\darknet\yolo_console_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_console_dll
+
+ * you can run your console application from Windows Explorer `build\darknet\x64\yolo_console_dll.exe`
+ * or you can run from MSVS2015 (before this - you should copy 2 files `yolo-voc.cfg` and `yolo-voc.weights` to the directory `build\darknet\` )
+ * after launching your console application and entering the image file name - you will see info for each object:
+ `<obj_id> <left_x> <top_y> <width> <height> <probability>`
+ * to use simple OpenCV-GUI you should uncomment line `//#define OPENCV` in `yolo_console_dll.cpp`-file: [link](https://github.com/AlexeyAB/darknet/blob/a6cbaeecde40f91ddc3ea09aa26a03ab5bbf8ba8/src/yolo_console_dll.cpp#L5)
+ * you can see source code of simple example for detection on the video file: [link](https://github.com/AlexeyAB/darknet/blob/ab1c5f9e57b4175f29a6ef39e7e68987d3e98704/src/yolo_console_dll.cpp#L75)
+
+`yolo_cpp_dll.dll`-API: [link](https://github.com/AlexeyAB/darknet/blob/master/src/yolo_v2_class.hpp#L42)
+```
+class Detector {
+public:
+ Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
+ ~Detector();
+
+ std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
+ std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
+ static image_t load_image(std::string image_filename);
+ static void free_image(image_t m);
+
+#ifdef OPENCV
+ std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false);
+#endif
+};
+```
--
Gitblit v1.10.0