From e6c97a53a7b5ac4014d30d236ea2bf5adb4bb521 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Tue, 07 Aug 2018 20:19:50 +0000
Subject: [PATCH] Maxpool fixes
---
src/convolutional_layer.c | 181 +++++++++++++++++++++++++++++----------------
1 files changed, 117 insertions(+), 64 deletions(-)
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 377b898..554bd42 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -141,60 +141,67 @@
{
#ifdef CUDNN_HALF
- // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0):
- // Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
- // PSEUDO_HALF_CONFIG is required for Tensor Cores - our case!
- const cudnnDataType_t data_type = CUDNN_DATA_HALF;
+ // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0):
+ // Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
+ // PSEUDO_HALF_CONFIG is required for Tensor Cores - our case!
+ const cudnnDataType_t data_type = CUDNN_DATA_HALF;
#else
- cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
+ cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
#endif
#if(CUDNN_MAJOR >= 7)
- // Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
- // For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT
- // otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF
- // Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
- // 1. Accumulation into FP32
- // 2. Loss Scaling - required only for: activation gradients. We do not use.
- // 3. FP32 Master Copy of Weights
- // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
- cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH);
+ // Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
+ // For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT
+ // otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF
+ // Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
+ // 1. Accumulation into FP32
+ // 2. Loss Scaling - required only for: activation gradients. We do not use.
+ // 3. FP32 Master Copy of Weights
+ // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
+ cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH);
#endif
- // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported
- // on architectures with DP4A support (compute capability 6.1 and later).
- //cudnnDataType_t data_type = CUDNN_DATA_INT8;
+ // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported
+ // on architectures with DP4A support (compute capability 6.1 and later).
+ //cudnnDataType_t data_type = CUDNN_DATA_INT8;
- // backward delta
+ // backward delta
cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
- // forward
+ // forward
cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
-#if(CUDNN_MAJOR >= 6)
- cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0
-#else
- cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); // cudnn 5.1
-#endif
- int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST;
- int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST;
- int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST;
- if (cudnn_preference == cudnn_smallest)
- {
- forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE;
- backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE;
- backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE;
- }
- cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
+ // batch norm
+ cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
+ cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
+
+ cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
+#if(CUDNN_MAJOR >= 6)
+ cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0
+#else
+ cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); // cudnn 5.1
+#endif
+ int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST;
+ int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST;
+ int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST;
+ if (cudnn_preference == cudnn_smallest)
+ {
+ forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE;
+ backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE;
+ backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE;
+ printf(" CUDNN-slow ");
+ }
+
+ cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
l->srcTensorDesc,
l->weightDesc,
l->convDesc,
l->dstTensorDesc,
- forward_algo,
+ forward_algo,
0,
&l->fw_algo);
cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
@@ -202,7 +209,7 @@
l->ddstTensorDesc,
l->convDesc,
l->dsrcTensorDesc,
- backward_algo,
+ backward_algo,
0,
&l->bd_algo);
cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
@@ -210,9 +217,41 @@
l->ddstTensorDesc,
l->convDesc,
l->dweightDesc,
- backward_filter,
+ backward_filter,
0,
&l->bf_algo);
+
+ if (data_type == CUDNN_DATA_HALF)
+ {
+ // HALF-16 if(data_type == CUDNN_DATA_HALF)
+ l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
+ l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
+ l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
+
+ // FLOAT-32 if(data_type == CUDNN_DATA_FLOAT)
+ //l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED;
+ //l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED;
+ //l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED;
+
+ int fw = 0, bd = 0, bf = 0;
+ if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) fw = 1;
+ //printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM \n");
+ if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED) fw = 2;
+ //printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED \n");
+
+ if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) bd = 1;
+ //printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 \n");
+ if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED) bd = 2;
+ //printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED \n");
+
+ if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) bf = 1;
+ //printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 \n");
+ if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED) bf = 2;
+ //printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED \n");
+
+ if (fw == 2 && bd == 2 && bf == 2) printf("TF ");
+ else if (fw == 1 && bd == 1 && bf == 1) printf("TH ");
+ }
}
#endif
#endif
@@ -305,8 +344,8 @@
l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
#ifdef CUDNN_HALF
- l.weights_gpu16 = cuda_make_array(l.weights, c*n*size*size / 2);
- l.weight_updates_gpu16 = cuda_make_array(l.weight_updates, c*n*size*size / 2);
+ l.weights_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weights, c*n*size*size / 2);
+ l.weight_updates_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weight_updates, c*n*size*size / 2);
#endif
l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
@@ -340,7 +379,10 @@
l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
}
-#ifdef CUDNN
+#ifdef CUDNN
+ cudnnCreateTensorDescriptor(&l.normDstTensorDesc);
+ cudnnCreateTensorDescriptor(&l.normDstTensorDescF16);
+ cudnnCreateTensorDescriptor(&l.normTensorDesc);
cudnnCreateTensorDescriptor(&l.srcTensorDesc);
cudnnCreateTensorDescriptor(&l.dstTensorDesc);
cudnnCreateFilterDescriptor(&l.weightDesc);
@@ -355,7 +397,9 @@
l.workspace_size = get_workspace_size(l);
l.activation = activation;
- fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
+ //fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
+ l.bflops = (2.0 * l.n * l.size*l.size*l.c * l.out_h*l.out_w) / 1000000000.;
+ fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, l.bflops);
return l;
}
@@ -401,8 +445,8 @@
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
{
- int old_w = l->w;
- int old_h = l->h;
+ int old_w = l->w;
+ int old_h = l->h;
l->w = w;
l->h = h;
int out_w = convolutional_out_width(*l);
@@ -421,22 +465,31 @@
l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
}
+ if (l->xnor) {
+ //l->binary_input = realloc(l->inputs*l->batch, sizeof(float));
+ }
+
#ifdef GPU
- if (old_w < w || old_h < h) {
- cuda_free(l->delta_gpu);
- cuda_free(l->output_gpu);
+ if (old_w < w || old_h < h) {
+ cuda_free(l->delta_gpu);
+ cuda_free(l->output_gpu);
- l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
- l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+ l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
+ l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
- if (l->batch_normalize) {
- cuda_free(l->x_gpu);
- cuda_free(l->x_norm_gpu);
+ if (l->batch_normalize) {
+ cuda_free(l->x_gpu);
+ cuda_free(l->x_norm_gpu);
- l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
- l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
- }
- }
+ l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+ l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+ }
+
+ if (l->xnor) {
+ cuda_free(l->binary_input_gpu);
+ l->binary_input_gpu = cuda_make_array(0, l->inputs*l->batch);
+ }
+ }
#ifdef CUDNN
cudnn_convolutional_setup(l, cudnn_fastest);
#endif
@@ -444,15 +497,15 @@
l->workspace_size = get_workspace_size(*l);
#ifdef CUDNN
- // check for excessive memory consumption
- size_t free_byte;
- size_t total_byte;
- check_error(cudaMemGetInfo(&free_byte, &total_byte));
- if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
- printf(" used slow CUDNN algo without Workspace! \n");
- cudnn_convolutional_setup(l, cudnn_smallest);
- l->workspace_size = get_workspace_size(*l);
- }
+ // check for excessive memory consumption
+ size_t free_byte;
+ size_t total_byte;
+ check_error(cudaMemGetInfo(&free_byte, &total_byte));
+ if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
+ printf(" used slow CUDNN algo without Workspace! Need memory: %zu, available: %zu\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2);
+ cudnn_convolutional_setup(l, cudnn_smallest);
+ l->workspace_size = get_workspace_size(*l);
+ }
#endif
}
--
Gitblit v1.10.0