From e6c97a53a7b5ac4014d30d236ea2bf5adb4bb521 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Tue, 07 Aug 2018 20:19:50 +0000
Subject: [PATCH] Maxpool fixes

---
 src/yolo_v2_class.hpp |  821 +++++++++++++++++++++++++++++++++++++++++----------------
 1 files changed, 584 insertions(+), 237 deletions(-)

diff --git a/src/yolo_v2_class.hpp b/src/yolo_v2_class.hpp
index d60f359..199b1c9 100644
--- a/src/yolo_v2_class.hpp
+++ b/src/yolo_v2_class.hpp
@@ -1,313 +1,660 @@
 #pragma once
-#include <memory>
-#include <vector>
-#include <deque>
-#include <algorithm>
-
-#ifdef OPENCV
-#include <opencv2/opencv.hpp>			// C++
-#include "opencv2/highgui/highgui_c.h"	// C
-#include "opencv2/imgproc/imgproc_c.h"	// C
-
-#include <opencv2/cudaoptflow.hpp>
-#include <opencv2/cudaimgproc.hpp>
-#include <opencv2/cudaarithm.hpp>
-#include <opencv2/core/cuda.hpp>
-#endif	// OPENCV
-
 #ifdef YOLODLL_EXPORTS
 #if defined(_MSC_VER)
-#define YOLODLL_API __declspec(dllexport) 
+#define YOLODLL_API __declspec(dllexport)
 #else
 #define YOLODLL_API __attribute__((visibility("default")))
 #endif
 #else
 #if defined(_MSC_VER)
-#define YOLODLL_API __declspec(dllimport) 
+#define YOLODLL_API __declspec(dllimport)
 #else
 #define YOLODLL_API
 #endif
 #endif
 
 struct bbox_t {
-	unsigned int x, y, w, h;	// (x,y) - top-left corner, (w, h) - width & height of bounded box
-	float prob;					// confidence - probability that the object was found correctly
-	unsigned int obj_id;		// class of object - from range [0, classes-1]
-	unsigned int track_id;		// tracking id for video (0 - untracked, 1 - inf - tracked object)
+    unsigned int x, y, w, h;    // (x,y) - top-left corner, (w, h) - width & height of bounded box
+    float prob;                    // confidence - probability that the object was found correctly
+    unsigned int obj_id;        // class of object - from range [0, classes-1]
+    unsigned int track_id;        // tracking id for video (0 - untracked, 1 - inf - tracked object)
+    unsigned int frames_counter;// counter of frames on which the object was detected
 };
 
 struct image_t {
-	int h;						// height
-	int w;						// width
-	int c;						// number of chanels (3 - for RGB)
-	float *data;				// pointer to the image data
+    int h;                        // height
+    int w;                        // width
+    int c;                        // number of chanels (3 - for RGB)
+    float *data;                // pointer to the image data
 };
 
+#define C_SHARP_MAX_OBJECTS 1000
+struct bbox_t_container {
+    bbox_t candidates[C_SHARP_MAX_OBJECTS];
+};
 
-class Detector {
-	std::shared_ptr<void> detector_gpu_ptr;
-	std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
-public:
-	float nms = .4;
-
-	YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
-	YOLODLL_API ~Detector();
-
-	YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
-	YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
-	static YOLODLL_API image_t load_image(std::string image_filename);
-	static YOLODLL_API void free_image(image_t m);
-	YOLODLL_API int get_net_width() const;
-	YOLODLL_API int get_net_height() const;
-
-	YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 6);
+#ifdef __cplusplus
+#include <memory>
+#include <vector>
+#include <deque>
+#include <algorithm>
 
 #ifdef OPENCV
-	std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
-	{
-		if(mat.data == NULL)
-			throw std::runtime_error("Image is empty");
-		auto image_ptr = mat_to_image_resize(mat);
-		return detect_resized(*image_ptr, mat.size(), thresh, use_mean);
-	}
+#include <opencv2/opencv.hpp>            // C++
+#include "opencv2/highgui/highgui_c.h"    // C
+#include "opencv2/imgproc/imgproc_c.h"    // C
+#endif    // OPENCV
 
-	std::vector<bbox_t> detect_resized(image_t img, cv::Size init_size, float thresh = 0.2, bool use_mean = false)
-	{
-		if (img.data == NULL)
-			throw std::runtime_error("Image is empty");
-		auto detection_boxes = detect(img, thresh, use_mean);
-		float wk = (float)init_size.width / img.w, hk = (float)init_size.height / img.h;
-		for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
-		return detection_boxes;
-	}
+extern "C" YOLODLL_API int init(const char *configurationFilename, const char *weightsFilename, int gpu);
+extern "C" YOLODLL_API int detect_image(const char *filename, bbox_t_container &container);
+extern "C" YOLODLL_API int detect_mat(const uint8_t* data, const size_t data_length, bbox_t_container &container);
+extern "C" YOLODLL_API int dispose();
+extern "C" YOLODLL_API int get_device_count();
+extern "C" YOLODLL_API int get_device_name(int gpu, char* deviceName);
 
-	std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const
-	{
-		if (mat.data == NULL) return std::shared_ptr<image_t>(NULL);
-		cv::Mat det_mat;
-		cv::resize(mat, det_mat, cv::Size(get_net_width(), get_net_height()));
-		return mat_to_image(det_mat);
-	}
+class Detector {
+    std::shared_ptr<void> detector_gpu_ptr;
+    std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
+    const int cur_gpu_id;
+public:
+    float nms = .4;
+    bool wait_stream;
 
-	static std::shared_ptr<image_t> mat_to_image(cv::Mat img)
-	{
-		std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
-		std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
-		*image_ptr = ipl_to_image(ipl_small.get());
-		rgbgr_image(*image_ptr);
-		return image_ptr;
-	}
+    YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
+    YOLODLL_API ~Detector();
+
+    YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
+    YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
+    static YOLODLL_API image_t load_image(std::string image_filename);
+    static YOLODLL_API void free_image(image_t m);
+    YOLODLL_API int get_net_width() const;
+    YOLODLL_API int get_net_height() const;
+    YOLODLL_API int get_net_color_depth() const;
+
+    YOLODLL_API std::vector<bbox_t> tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history = true,
+                                                int const frames_story = 10, int const max_dist = 150);
+
+    std::vector<bbox_t> detect_resized(image_t img, int init_w, int init_h, float thresh = 0.2, bool use_mean = false)
+    {
+        if (img.data == NULL)
+            throw std::runtime_error("Image is empty");
+        auto detection_boxes = detect(img, thresh, use_mean);
+        float wk = (float)init_w / img.w, hk = (float)init_h / img.h;
+        for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
+        return detection_boxes;
+    }
+
+#ifdef OPENCV
+    std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
+    {
+        if(mat.data == NULL)
+            throw std::runtime_error("Image is empty");
+        auto image_ptr = mat_to_image_resize(mat);
+        return detect_resized(*image_ptr, mat.cols, mat.rows, thresh, use_mean);
+    }
+
+    std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const
+    {
+        if (mat.data == NULL) return std::shared_ptr<image_t>(NULL);
+
+        cv::Size network_size = cv::Size(get_net_width(), get_net_height());
+        cv::Mat det_mat;
+        if (mat.size() != network_size)
+            cv::resize(mat, det_mat, network_size);
+        else
+            det_mat = mat;  // only reference is copied
+
+        return mat_to_image(det_mat);
+    }
+
+    static std::shared_ptr<image_t> mat_to_image(cv::Mat img_src)
+    {
+        cv::Mat img;
+        cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR);
+        std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
+        std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
+        *image_ptr = ipl_to_image(ipl_small.get());
+        return image_ptr;
+    }
 
 private:
 
-	static image_t ipl_to_image(IplImage* src)
-	{
-		unsigned char *data = (unsigned char *)src->imageData;
-		int h = src->height;
-		int w = src->width;
-		int c = src->nChannels;
-		int step = src->widthStep;
-		image_t out = make_image_custom(w, h, c);
-		int i, j, k, count = 0;;
+    static image_t ipl_to_image(IplImage* src)
+    {
+        unsigned char *data = (unsigned char *)src->imageData;
+        int h = src->height;
+        int w = src->width;
+        int c = src->nChannels;
+        int step = src->widthStep;
+        image_t out = make_image_custom(w, h, c);
+        int count = 0;
 
-		for (k = 0; k < c; ++k) {
-			for (i = 0; i < h; ++i) {
-				for (j = 0; j < w; ++j) {
-					out.data[count++] = data[i*step + j*c + k] / 255.;
-				}
-			}
-		}
-		return out;
-	}
+        for (int k = 0; k < c; ++k) {
+            for (int i = 0; i < h; ++i) {
+                int i_step = i*step;
+                for (int j = 0; j < w; ++j) {
+                    out.data[count++] = data[i_step + j*c + k] / 255.;
+                }
+            }
+        }
 
-	static image_t make_empty_image(int w, int h, int c)
-	{
-		image_t out;
-		out.data = 0;
-		out.h = h;
-		out.w = w;
-		out.c = c;
-		return out;
-	}
+        return out;
+    }
 
-	static image_t make_image_custom(int w, int h, int c)
-	{
-		image_t out = make_empty_image(w, h, c);
-		out.data = (float *)calloc(h*w*c, sizeof(float));
-		return out;
-	}
+    static image_t make_empty_image(int w, int h, int c)
+    {
+        image_t out;
+        out.data = 0;
+        out.h = h;
+        out.w = w;
+        out.c = c;
+        return out;
+    }
 
-	static void rgbgr_image(image_t im)
-	{
-		int i;
-		for (i = 0; i < im.w*im.h; ++i) {
-			float swap = im.data[i];
-			im.data[i] = im.data[i + im.w*im.h * 2];
-			im.data[i + im.w*im.h * 2] = swap;
-		}
-	}
+    static image_t make_image_custom(int w, int h, int c)
+    {
+        image_t out = make_empty_image(w, h, c);
+        out.data = (float *)calloc(h*w*c, sizeof(float));
+        return out;
+    }
 
-#endif	// OPENCV
+#endif    // OPENCV
 
 };
 
 
-#if defined(TRACK_OPTFLOW) && defined(OPENCV)
+
+#if defined(TRACK_OPTFLOW) && defined(OPENCV) && defined(GPU)
+
+#include <opencv2/cudaoptflow.hpp>
+#include <opencv2/cudaimgproc.hpp>
+#include <opencv2/cudaarithm.hpp>
+#include <opencv2/core/cuda.hpp>
 
 class Tracker_optflow {
 public:
-	int gpu_id;
-
-	Tracker_optflow(int _gpu_id = 0) : gpu_id(_gpu_id)
-	{
-		int const old_gpu_id = cv::cuda::getDevice();
-		static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount();
-		if (gpu_count > gpu_id)
-			cv::cuda::setDevice(gpu_id);
-
-		sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create();
-		//sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(31, 31)); //sync_PyrLKOpticalFlow_gpu.winSize = cv::Size(31, 31);
-		//sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(15, 15)); //sync_PyrLKOpticalFlow_gpu.winSize = cv::Size(15, 15);
-
-		sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(21, 21));
-		sync_PyrLKOpticalFlow_gpu->setMaxLevel(50);	//sync_PyrLKOpticalFlow_gpu.maxLevel = 8;	// +-32 points	// def: 3
-		sync_PyrLKOpticalFlow_gpu->setNumIters(6000);	//sync_PyrLKOpticalFlow_gpu.iters = 8000;	// def: 30
-	}
-
-	// just to avoid extra allocations
-	cv::cuda::GpuMat src_mat_gpu;
-	cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu;
-	cv::cuda::GpuMat tmp_grey_gpu;
-	cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu;
-	cv::cuda::GpuMat status_gpu, err_gpu;
-
-	cv::cuda::GpuMat src_grey_gpu;	// used in both functions
-	cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu;
-
-	void update_tracking_flow(cv::Mat src_mat)
-	{
-		int const old_gpu_id = cv::cuda::getDevice();
-		static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount();
-		if (gpu_count > gpu_id)
-			cv::cuda::setDevice(gpu_id);
-
-		cv::cuda::Stream stream;
-
-		if (src_mat.channels() == 3) {
-			if (src_mat_gpu.cols == 0) {
-				src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
-				src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
-			}
-
-			src_mat_gpu.upload(src_mat, stream);
-			cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 0, stream);
-		}
-		cv::cuda::setDevice(old_gpu_id);
-	}
+    const int gpu_count;
+    const int gpu_id;
+    const int flow_error;
 
 
-	std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, std::vector<bbox_t> cur_bbox_vec)
-	{
-		if (sync_PyrLKOpticalFlow_gpu.empty()) {
-			std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n";
-			return cur_bbox_vec;
-		}
+    Tracker_optflow(int _gpu_id = 0, int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
+        gpu_count(cv::cuda::getCudaEnabledDeviceCount()), gpu_id(std::min(_gpu_id, gpu_count-1)),
+        flow_error((_flow_error > 0)? _flow_error:(win_size*4))
+    {
+        int const old_gpu_id = cv::cuda::getDevice();
+        cv::cuda::setDevice(gpu_id);
 
-		int const old_gpu_id = cv::cuda::getDevice();
-		static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount();
-		if (gpu_count > gpu_id)
-			cv::cuda::setDevice(gpu_id);
+        stream = cv::cuda::Stream();
 
-		cv::cuda::Stream stream;
+        sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create();
+        sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(win_size, win_size));    // 9, 15, 21, 31
+        sync_PyrLKOpticalFlow_gpu->setMaxLevel(max_level);        // +- 3 pt
+        sync_PyrLKOpticalFlow_gpu->setNumIters(iterations);    // 2000, def: 30
 
-		if (dst_mat_gpu.cols == 0) {
-			dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type());
-			dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
-			tmp_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
-		}
+        cv::cuda::setDevice(old_gpu_id);
+    }
+
+    // just to avoid extra allocations
+    cv::cuda::GpuMat src_mat_gpu;
+    cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu;
+    cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu;
+    cv::cuda::GpuMat status_gpu, err_gpu;
+
+    cv::cuda::GpuMat src_grey_gpu;    // used in both functions
+    cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu;
+    cv::cuda::Stream stream;
+
+    std::vector<bbox_t> cur_bbox_vec;
+    std::vector<bool> good_bbox_vec_flags;
+    cv::Mat prev_pts_flow_cpu;
+
+    void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
+    {
+        cur_bbox_vec = _cur_bbox_vec;
+        good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
+        cv::Mat prev_pts, cur_pts_flow_cpu;
+
+        for (auto &i : cur_bbox_vec) {
+            float x_center = (i.x + i.w / 2.0F);
+            float y_center = (i.y + i.h / 2.0F);
+            prev_pts.push_back(cv::Point2f(x_center, y_center));
+        }
+
+        if (prev_pts.rows == 0)
+            prev_pts_flow_cpu = cv::Mat();
+        else
+            cv::transpose(prev_pts, prev_pts_flow_cpu);
+
+        if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) {
+            prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
+            cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
+
+            status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1);
+            err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1);
+        }
+
+        prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream);
+    }
 
 
-		dst_mat_gpu.upload(dst_mat, stream);
+    void update_tracking_flow(cv::Mat src_mat, std::vector<bbox_t> _cur_bbox_vec)
+    {
+        int const old_gpu_id = cv::cuda::getDevice();
+        if (old_gpu_id != gpu_id)
+            cv::cuda::setDevice(gpu_id);
 
-		cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 0, stream);
+        if (src_mat.channels() == 3) {
+            if (src_mat_gpu.cols == 0) {
+                src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
+                src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
+            }
 
-		if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) {
-			stream.waitForCompletion();
-			src_grey_gpu = dst_grey_gpu.clone();
-			cv::cuda::setDevice(old_gpu_id);
-			return cur_bbox_vec;
-		}
+            update_cur_bbox_vec(_cur_bbox_vec);
 
-		cv::Mat prev_pts, prev_pts_flow_cpu, cur_pts_flow_cpu;
-
-		for (auto &i : cur_bbox_vec) {
-			float x_center = (i.x + i.w / 2);
-			float y_center = (i.y + i.h / 2);
-			prev_pts.push_back(cv::Point2f(x_center, y_center));
-		}
+            //src_grey_gpu.upload(src_mat, stream);    // use BGR
+            src_mat_gpu.upload(src_mat, stream);
+            cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 1, stream);
+        }
+        if (old_gpu_id != gpu_id)
+            cv::cuda::setDevice(old_gpu_id);
+    }
 
 
-		if (prev_pts.rows == 0)
-			prev_pts_flow_cpu = cv::Mat();
-		else
-			cv::transpose(prev_pts, prev_pts_flow_cpu);
+    std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, bool check_error = true)
+    {
+        if (sync_PyrLKOpticalFlow_gpu.empty()) {
+            std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n";
+            return cur_bbox_vec;
+        }
+
+        int const old_gpu_id = cv::cuda::getDevice();
+        if(old_gpu_id != gpu_id)
+            cv::cuda::setDevice(gpu_id);
+
+        if (dst_mat_gpu.cols == 0) {
+            dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type());
+            dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
+        }
+
+        //dst_grey_gpu.upload(dst_mat, stream);    // use BGR
+        dst_mat_gpu.upload(dst_mat, stream);
+        cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 1, stream);
+
+        if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) {
+            stream.waitForCompletion();
+            src_grey_gpu = dst_grey_gpu.clone();
+            cv::cuda::setDevice(old_gpu_id);
+            return cur_bbox_vec;
+        }
+
+        ////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu);    // OpenCV 2.4.x
+        sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream);    // OpenCV 3.x
+
+        cv::Mat cur_pts_flow_cpu;
+        cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream);
+
+        dst_grey_gpu.copyTo(src_grey_gpu, stream);
+
+        cv::Mat err_cpu, status_cpu;
+        err_gpu.download(err_cpu, stream);
+        status_gpu.download(status_cpu, stream);
+
+        stream.waitForCompletion();
+
+        std::vector<bbox_t> result_bbox_vec;
+
+        if (err_cpu.cols == cur_bbox_vec.size() && status_cpu.cols == cur_bbox_vec.size())
+        {
+            for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
+            {
+                cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i);
+                cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i);
+
+                float moved_x = cur_key_pt.x - prev_key_pt.x;
+                float moved_y = cur_key_pt.y - prev_key_pt.y;
+
+                if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
+                    if (err_cpu.at<float>(0, i) < flow_error && status_cpu.at<unsigned char>(0, i) != 0 &&
+                        ((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
+                    {
+                        cur_bbox_vec[i].x += moved_x + 0.5;
+                        cur_bbox_vec[i].y += moved_y + 0.5;
+                        result_bbox_vec.push_back(cur_bbox_vec[i]);
+                    }
+                    else good_bbox_vec_flags[i] = false;
+                else good_bbox_vec_flags[i] = false;
+
+                //if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
+            }
+        }
+
+        cur_pts_flow_gpu.swap(prev_pts_flow_gpu);
+        cur_pts_flow_cpu.copyTo(prev_pts_flow_cpu);
+
+        if (old_gpu_id != gpu_id)
+            cv::cuda::setDevice(old_gpu_id);
+
+        return result_bbox_vec;
+    }
+
+};
+
+#elif defined(TRACK_OPTFLOW) && defined(OPENCV)
+
+//#include <opencv2/optflow.hpp>
+#include <opencv2/video/tracking.hpp>
+
+class Tracker_optflow {
+public:
+    const int flow_error;
 
 
-		if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) {
-			prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
-			cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
+    Tracker_optflow(int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
+        flow_error((_flow_error > 0)? _flow_error:(win_size*4))
+    {
+        sync_PyrLKOpticalFlow = cv::SparsePyrLKOpticalFlow::create();
+        sync_PyrLKOpticalFlow->setWinSize(cv::Size(win_size, win_size));    // 9, 15, 21, 31
+        sync_PyrLKOpticalFlow->setMaxLevel(max_level);        // +- 3 pt
 
-			status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1);
-			err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1);
-		}
+    }
 
-		prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream);
+    // just to avoid extra allocations
+    cv::Mat dst_grey;
+    cv::Mat prev_pts_flow, cur_pts_flow;
+    cv::Mat status, err;
+
+    cv::Mat src_grey;    // used in both functions
+    cv::Ptr<cv::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow;
+
+    std::vector<bbox_t> cur_bbox_vec;
+    std::vector<bool> good_bbox_vec_flags;
+
+    void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
+    {
+        cur_bbox_vec = _cur_bbox_vec;
+        good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
+        cv::Mat prev_pts, cur_pts_flow;
+
+        for (auto &i : cur_bbox_vec) {
+            float x_center = (i.x + i.w / 2.0F);
+            float y_center = (i.y + i.h / 2.0F);
+            prev_pts.push_back(cv::Point2f(x_center, y_center));
+        }
+
+        if (prev_pts.rows == 0)
+            prev_pts_flow = cv::Mat();
+        else
+            cv::transpose(prev_pts, prev_pts_flow);
+    }
 
 
-		dst_grey_gpu.copyTo(tmp_grey_gpu, stream);
+    void update_tracking_flow(cv::Mat new_src_mat, std::vector<bbox_t> _cur_bbox_vec)
+    {
+        if (new_src_mat.channels() == 3) {
 
-		////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu);	// OpenCV 2.4.x
-		sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream);	// OpenCV 3.x
+            update_cur_bbox_vec(_cur_bbox_vec);
 
-		cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream);
+            cv::cvtColor(new_src_mat, src_grey, CV_BGR2GRAY, 1);
+        }
+    }
 
-		tmp_grey_gpu.copyTo(src_grey_gpu, stream);
 
-		cv::Mat err_cpu, status_cpu;
-		err_gpu.download(err_cpu, stream);
-		status_gpu.download(status_cpu, stream);
+    std::vector<bbox_t> tracking_flow(cv::Mat new_dst_mat, bool check_error = true)
+    {
+        if (sync_PyrLKOpticalFlow.empty()) {
+            std::cout << "sync_PyrLKOpticalFlow isn't initialized \n";
+            return cur_bbox_vec;
+        }
 
-		stream.waitForCompletion();
+        cv::cvtColor(new_dst_mat, dst_grey, CV_BGR2GRAY, 1);
 
-		std::vector<bbox_t> result_bbox_vec;
+        if (src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols) {
+            src_grey = dst_grey.clone();
+            return cur_bbox_vec;
+        }
 
-		for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
-		{
-			cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i);
-			cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i);
+        if (prev_pts_flow.cols < 1) {
+            return cur_bbox_vec;
+        }
 
-			float moved_x = cur_key_pt.x - prev_key_pt.x;
-			float moved_y = cur_key_pt.y - prev_key_pt.y;
+        ////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu);    // OpenCV 2.4.x
+        sync_PyrLKOpticalFlow->calc(src_grey, dst_grey, prev_pts_flow, cur_pts_flow, status, err);    // OpenCV 3.x
 
-			if (err_cpu.cols > i &&  status_cpu.cols > i)
-				if (abs(moved_x) < 100 && abs(moved_y) < 100)
-					//if (err_cpu.at<float>(0, i) < 60 && status_cpu.at<unsigned char>(0, i) != 0)
-					{
-						cur_bbox_vec[i].x += moved_x + 0.5;
-						cur_bbox_vec[i].y += moved_y + 0.5;
-						result_bbox_vec.push_back(cur_bbox_vec[i]);
-					}
-		}
+        dst_grey.copyTo(src_grey);
 
-		cv::cuda::setDevice(old_gpu_id);
+        std::vector<bbox_t> result_bbox_vec;
 
-		return result_bbox_vec;
-	}
+        if (err.rows == cur_bbox_vec.size() && status.rows == cur_bbox_vec.size())
+        {
+            for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
+            {
+                cv::Point2f cur_key_pt = cur_pts_flow.at<cv::Point2f>(0, i);
+                cv::Point2f prev_key_pt = prev_pts_flow.at<cv::Point2f>(0, i);
+
+                float moved_x = cur_key_pt.x - prev_key_pt.x;
+                float moved_y = cur_key_pt.y - prev_key_pt.y;
+
+                if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
+                    if (err.at<float>(0, i) < flow_error && status.at<unsigned char>(0, i) != 0 &&
+                        ((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
+                    {
+                        cur_bbox_vec[i].x += moved_x + 0.5;
+                        cur_bbox_vec[i].y += moved_y + 0.5;
+                        result_bbox_vec.push_back(cur_bbox_vec[i]);
+                    }
+                    else good_bbox_vec_flags[i] = false;
+                else good_bbox_vec_flags[i] = false;
+
+                //if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
+            }
+        }
+
+        prev_pts_flow = cur_pts_flow.clone();
+
+        return result_bbox_vec;
+    }
 
 };
 #else
 
 class Tracker_optflow {};
 
-#endif	// defined(TRACK_OPTFLOW) && defined(OPENCV) 
+#endif    // defined(TRACK_OPTFLOW) && defined(OPENCV)
 
+
+#ifdef OPENCV
+
+static cv::Scalar obj_id_to_color(int obj_id) {
+    int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } };
+    int const offset = obj_id * 123457 % 6;
+    int const color_scale = 150 + (obj_id * 123457) % 100;
+    cv::Scalar color(colors[offset][0], colors[offset][1], colors[offset][2]);
+    color *= color_scale;
+    return color;
+}
+
+class preview_boxes_t {
+    enum { frames_history = 30 };    // how long to keep the history saved
+
+    struct preview_box_track_t {
+        unsigned int track_id, obj_id, last_showed_frames_ago;
+        bool current_detection;
+        bbox_t bbox;
+        cv::Mat mat_obj, mat_resized_obj;
+        preview_box_track_t() : track_id(0), obj_id(0), last_showed_frames_ago(frames_history), current_detection(false) {}
+    };
+    std::vector<preview_box_track_t> preview_box_track_id;
+    size_t const preview_box_size, bottom_offset;
+    bool const one_off_detections;
+public:
+    preview_boxes_t(size_t _preview_box_size = 100, size_t _bottom_offset = 100, bool _one_off_detections = false) :
+        preview_box_size(_preview_box_size), bottom_offset(_bottom_offset), one_off_detections(_one_off_detections)
+    {}
+
+    void set(cv::Mat src_mat, std::vector<bbox_t> result_vec)
+    {
+        size_t const count_preview_boxes = src_mat.cols / preview_box_size;
+        if (preview_box_track_id.size() != count_preview_boxes) preview_box_track_id.resize(count_preview_boxes);
+
+        // increment frames history
+        for (auto &i : preview_box_track_id)
+            i.last_showed_frames_ago = std::min((unsigned)frames_history, i.last_showed_frames_ago + 1);
+
+        // occupy empty boxes
+        for (auto &k : result_vec) {
+            bool found = false;
+            // find the same (track_id)
+            for (auto &i : preview_box_track_id) {
+                if (i.track_id == k.track_id) {
+                    if (!one_off_detections) i.last_showed_frames_ago = 0; // for tracked objects
+                    found = true;
+                    break;
+                }
+            }
+            if (!found) {
+                // find empty box
+                for (auto &i : preview_box_track_id) {
+                    if (i.last_showed_frames_ago == frames_history) {
+                        if (!one_off_detections && k.frames_counter == 0) break; // don't show if obj isn't tracked yet
+                        i.track_id = k.track_id;
+                        i.obj_id = k.obj_id;
+                        i.bbox = k;
+                        i.last_showed_frames_ago = 0;
+                        break;
+                    }
+                }
+            }
+        }
+
+        // draw preview box (from old or current frame)
+        for (size_t i = 0; i < preview_box_track_id.size(); ++i)
+        {
+            // get object image
+            cv::Mat dst = preview_box_track_id[i].mat_resized_obj;
+            preview_box_track_id[i].current_detection = false;
+
+            for (auto &k : result_vec) {
+                if (preview_box_track_id[i].track_id == k.track_id) {
+                    if (one_off_detections && preview_box_track_id[i].last_showed_frames_ago > 0) {
+                        preview_box_track_id[i].last_showed_frames_ago = frames_history; break;
+                    }
+                    bbox_t b = k;
+                    cv::Rect r(b.x, b.y, b.w, b.h);
+                    cv::Rect img_rect(cv::Point2i(0, 0), src_mat.size());
+                    cv::Rect rect_roi = r & img_rect;
+                    if (rect_roi.width > 1 || rect_roi.height > 1) {
+                        cv::Mat roi = src_mat(rect_roi);
+                        cv::resize(roi, dst, cv::Size(preview_box_size, preview_box_size), cv::INTER_NEAREST);
+                        preview_box_track_id[i].mat_obj = roi.clone();
+                        preview_box_track_id[i].mat_resized_obj = dst.clone();
+                        preview_box_track_id[i].current_detection = true;
+                        preview_box_track_id[i].bbox = k;
+                    }
+                    break;
+                }
+            }
+        }
+    }
+
+
+    void draw(cv::Mat draw_mat, bool show_small_boxes = false)
+    {
+        // draw preview box (from old or current frame)
+        for (size_t i = 0; i < preview_box_track_id.size(); ++i)
+        {
+            auto &prev_box = preview_box_track_id[i];
+
+            // draw object image
+            cv::Mat dst = prev_box.mat_resized_obj;
+            if (prev_box.last_showed_frames_ago < frames_history &&
+                dst.size() == cv::Size(preview_box_size, preview_box_size))
+            {
+                cv::Rect dst_rect_roi(cv::Point2i(i * preview_box_size, draw_mat.rows - bottom_offset), dst.size());
+                cv::Mat dst_roi = draw_mat(dst_rect_roi);
+                dst.copyTo(dst_roi);
+
+                cv::Scalar color = obj_id_to_color(prev_box.obj_id);
+                int thickness = (prev_box.current_detection) ? 5 : 1;
+                cv::rectangle(draw_mat, dst_rect_roi, color, thickness);
+
+                unsigned int const track_id = prev_box.track_id;
+                std::string track_id_str = (track_id > 0) ? std::to_string(track_id) : "";
+                putText(draw_mat, track_id_str, dst_rect_roi.tl() - cv::Point2i(-4, 5), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.9, cv::Scalar(0, 0, 0), 2);
+
+                std::string size_str = std::to_string(prev_box.bbox.w) + "x" + std::to_string(prev_box.bbox.h);
+                putText(draw_mat, size_str, dst_rect_roi.tl() + cv::Point2i(0, 12), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
+
+                if (!one_off_detections && prev_box.current_detection) {
+                    cv::line(draw_mat, dst_rect_roi.tl() + cv::Point2i(preview_box_size, 0),
+                        cv::Point2i(prev_box.bbox.x, prev_box.bbox.y + prev_box.bbox.h),
+                        color);
+                }
+
+                if (one_off_detections && show_small_boxes) {
+                    cv::Rect src_rect_roi(cv::Point2i(prev_box.bbox.x, prev_box.bbox.y),
+                        cv::Size(prev_box.bbox.w, prev_box.bbox.h));
+                    unsigned int const color_history = (255 * prev_box.last_showed_frames_ago) / frames_history;
+                    color = cv::Scalar(255 - 3 * color_history, 255 - 2 * color_history, 255 - 1 * color_history);
+                    if (prev_box.mat_obj.size() == src_rect_roi.size()) {
+                        prev_box.mat_obj.copyTo(draw_mat(src_rect_roi));
+                    }
+                    cv::rectangle(draw_mat, src_rect_roi, color, thickness);
+                    putText(draw_mat, track_id_str, src_rect_roi.tl() - cv::Point2i(0, 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
+                }
+            }
+        }
+    }
+};
+#endif    // OPENCV
+
+//extern "C" {
+#endif    // __cplusplus
+
+/*
+    // C - wrappers
+    YOLODLL_API void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id);
+    YOLODLL_API void delete_detector();
+    YOLODLL_API bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size);
+    YOLODLL_API bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size);
+    YOLODLL_API bbox_t* detect(image_t img, int *result_size);
+    YOLODLL_API image_t load_img(char *image_filename);
+    YOLODLL_API void free_img(image_t m);
+
+#ifdef __cplusplus
+}    // extern "C"
+
+static std::shared_ptr<void> c_detector_ptr;
+static std::vector<bbox_t> c_result_vec;
+
+void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id) {
+    c_detector_ptr = std::make_shared<YOLODLL_API Detector>(cfg_filename, weight_filename, gpu_id);
+}
+
+void delete_detector() { c_detector_ptr.reset(); }
+
+bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size) {
+    c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect(img, thresh, use_mean);
+    *result_size = c_result_vec.size();
+    return c_result_vec.data();
+}
+
+bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size) {
+    c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect_resized(img, init_w, init_h, thresh, use_mean);
+    *result_size = c_result_vec.size();
+    return c_result_vec.data();
+}
+
+bbox_t* detect(image_t img, int *result_size) {
+    return detect_custom(img, 0.24, true, result_size);
+}
+
+image_t load_img(char *image_filename) {
+    return static_cast<Detector*>(c_detector_ptr.get())->load_image(image_filename);
+}
+void free_img(image_t m) {
+    static_cast<Detector*>(c_detector_ptr.get())->free_image(m);
+}
+
+#endif    // __cplusplus
+*/

--
Gitblit v1.10.0