From e7688a05a194e3c8baf3c11fbf09b7f5e8640a77 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 06 May 2015 21:08:16 +0000
Subject: [PATCH] no idea

---
 src/cost_layer.c |   69 +++++++++++++++++-----------------
 1 files changed, 35 insertions(+), 34 deletions(-)

diff --git a/src/cost_layer.c b/src/cost_layer.c
index 8158275..1f36232 100644
--- a/src/cost_layer.c
+++ b/src/cost_layer.c
@@ -10,6 +10,7 @@
 COST_TYPE get_cost_type(char *s)
 {
     if (strcmp(s, "sse")==0) return SSE;
+    if (strcmp(s, "masked")==0) return MASKED;
     fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s);
     return SSE;
 }
@@ -19,6 +20,8 @@
     switch(a){
         case SSE:
             return "sse";
+        case MASKED:
+            return "masked";
     }
     return "sse";
 }
@@ -38,57 +41,55 @@
     return layer;
 }
 
+void forward_cost_layer(cost_layer layer, network_state state)
+{
+    if (!state.truth) return;
+    if(layer.type == MASKED){
+        int i;
+        for(i = 0; i < layer.batch*layer.inputs; ++i){
+            if(state.truth[i] == 0) state.input[i] = 0;
+        }
+    }
+    copy_cpu(layer.batch*layer.inputs, state.truth, 1, layer.delta, 1);
+    axpy_cpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta, 1);
+    *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
+    //printf("cost: %f\n", *layer.output);
+}
+
+void backward_cost_layer(const cost_layer layer, network_state state)
+{
+    copy_cpu(layer.batch*layer.inputs, layer.delta, 1, state.delta, 1);
+}
+
+#ifdef GPU
+
 void pull_cost_layer(cost_layer layer)
 {
     cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
 }
+
 void push_cost_layer(cost_layer layer)
 {
     cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
 }
 
-void forward_cost_layer(cost_layer layer, float *input, float *truth)
+void forward_cost_layer_gpu(cost_layer layer, network_state state)
 {
-    if (!truth) return;
-    copy_cpu(layer.batch*layer.inputs, truth, 1, layer.delta, 1);
-    axpy_cpu(layer.batch*layer.inputs, -1, input, 1, layer.delta, 1);
-    *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
-    //printf("cost: %f\n", *layer.output);
-}
-
-void backward_cost_layer(const cost_layer layer, float *input, float *delta)
-{
-    copy_cpu(layer.batch*layer.inputs, layer.delta, 1, delta, 1);
-}
-
-#ifdef GPU
-
-void forward_cost_layer_gpu(cost_layer layer, float * input, float * truth)
-{
-    if (!truth) return;
+    if (!state.truth) return;
+    if (layer.type == MASKED) {
+        mask_ongpu(layer.batch*layer.inputs, state.input, state.truth);
+    }
     
-    /*
-    float *in = calloc(layer.inputs*layer.batch, sizeof(float));
-    float *t = calloc(layer.inputs*layer.batch, sizeof(float));
-    cuda_pull_array(input, in, layer.batch*layer.inputs);
-    cuda_pull_array(truth, t, layer.batch*layer.inputs);
-    forward_cost_layer(layer, in, t);
-    cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
-    free(in);
-    free(t);
-    */
-
-    copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_gpu, 1);
-    axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_gpu, 1);
+    copy_ongpu(layer.batch*layer.inputs, state.truth, 1, layer.delta_gpu, 1);
+    axpy_ongpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta_gpu, 1);
 
     cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
     *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
-    //printf("cost: %f\n", *layer.output);
 }
 
-void backward_cost_layer_gpu(const cost_layer layer, float * input, float * delta)
+void backward_cost_layer_gpu(const cost_layer layer, network_state state)
 {
-    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, delta, 1);
+    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, state.delta, 1);
 }
 #endif
 

--
Gitblit v1.10.0