From e92f7d301c971b4d27aa3dcd1e4047e94f04b3fc Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 25 Mar 2015 01:27:12 +0000
Subject: [PATCH] smaller gridsize in bias

---
 src/cost_layer.c |   87 +++++++++++++------------------------------
 1 files changed, 26 insertions(+), 61 deletions(-)

diff --git a/src/cost_layer.c b/src/cost_layer.c
index 08d3bb5..d2c616f 100644
--- a/src/cost_layer.c
+++ b/src/cost_layer.c
@@ -1,6 +1,7 @@
 #include "cost_layer.h"
 #include "utils.h"
-#include "mini_blas.h"
+#include "cuda.h"
+#include "blas.h"
 #include <math.h>
 #include <string.h>
 #include <stdlib.h>
@@ -9,7 +10,6 @@
 COST_TYPE get_cost_type(char *s)
 {
     if (strcmp(s, "sse")==0) return SSE;
-    if (strcmp(s, "detection")==0) return DETECTION;
     fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s);
     return SSE;
 }
@@ -19,8 +19,6 @@
     switch(a){
         case SSE:
             return "sse";
-        case DETECTION:
-            return "detection";
     }
     return "sse";
 }
@@ -35,83 +33,50 @@
     layer->delta = calloc(inputs*batch, sizeof(float));
     layer->output = calloc(1, sizeof(float));
     #ifdef GPU
-    layer->delta_cl = cl_make_array(layer->delta, inputs*batch);
+    layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch);
     #endif
     return layer;
 }
 
-void forward_cost_layer(cost_layer layer, float *input, float *truth)
+void pull_cost_layer(cost_layer layer)
 {
-    if (!truth) return;
-    copy_cpu(layer.batch*layer.inputs, truth, 1, layer.delta, 1);
-    axpy_cpu(layer.batch*layer.inputs, -1, input, 1, layer.delta, 1);
-    if(layer.type == DETECTION){
-        int i;
-        for(i = 0; i < layer.batch*layer.inputs; ++i){
-            if((i%5) && !truth[(i/5)*5]) layer.delta[i] = 0;
-        }
-    }
+    cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
+}
+void push_cost_layer(cost_layer layer)
+{
+    cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
+}
+
+void forward_cost_layer(cost_layer layer, network_state state)
+{
+    if (!state.truth) return;
+    copy_cpu(layer.batch*layer.inputs, state.truth, 1, layer.delta, 1);
+    axpy_cpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta, 1);
     *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
     //printf("cost: %f\n", *layer.output);
 }
 
-void backward_cost_layer(const cost_layer layer, float *input, float *delta)
+void backward_cost_layer(const cost_layer layer, network_state state)
 {
-    copy_cpu(layer.batch*layer.inputs, layer.delta, 1, delta, 1);
+    copy_cpu(layer.batch*layer.inputs, layer.delta, 1, state.delta, 1);
 }
 
 #ifdef GPU
 
-cl_kernel get_mask_kernel()
+void forward_cost_layer_gpu(cost_layer layer, network_state state)
 {
-    static int init = 0;
-    static cl_kernel kernel;
-    if(!init){
-        kernel = get_kernel("src/axpy.cl", "mask", 0);
-        init = 1;
-    }
-    return kernel;
-}
+    if (!state.truth) return;
+    
+    copy_ongpu(layer.batch*layer.inputs, state.truth, 1, layer.delta_gpu, 1);
+    axpy_ongpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta_gpu, 1);
 
-void mask_ongpu(int n, cl_mem x, cl_mem mask, int mod)
-{
-    cl_setup();
-    cl_kernel kernel = get_mask_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(kernel, i++, sizeof(n), (void*) &n);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(x), (void*) &x);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(mask), (void*) &mask);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(mod), (void*) &mod);
-    check_error(cl);
-
-    const size_t global_size[] = {n};
-
-    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
-    check_error(cl);
-
-}
-
-void forward_cost_layer_gpu(cost_layer layer, cl_mem input, cl_mem truth)
-{
-    if (!truth) return;
-
-    copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_cl, 1);
-    axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_cl, 1);
-
-    if(layer.type==DETECTION){
-        mask_ongpu(layer.inputs*layer.batch, layer.delta_cl, truth, 5);
-    }
-
-    cl_read_array(layer.delta_cl, layer.delta, layer.batch*layer.inputs);
+    cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
     *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
-    //printf("cost: %f\n", *layer.output);
 }
 
-void backward_cost_layer_gpu(const cost_layer layer, cl_mem input, cl_mem delta)
+void backward_cost_layer_gpu(const cost_layer layer, network_state state)
 {
-    copy_ongpu(layer.batch*layer.inputs, layer.delta_cl, 1, delta, 1);
+    copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, state.delta, 1);
 }
 #endif
 

--
Gitblit v1.10.0