From e92f7d301c971b4d27aa3dcd1e4047e94f04b3fc Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 25 Mar 2015 01:27:12 +0000
Subject: [PATCH] smaller gridsize in bias

---
 src/detection.c |   28 ++++++++++++++++------------
 1 files changed, 16 insertions(+), 12 deletions(-)

diff --git a/src/detection.c b/src/detection.c
index f861347..1800ca6 100644
--- a/src/detection.c
+++ b/src/detection.c
@@ -3,11 +3,11 @@
 #include "parser.h"
 
 
-char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
+char *class_names[] = {"bg", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
 #define AMNT 3
 void draw_detection(image im, float *box, int side)
 {
-    int classes = 20;
+    int classes = 21;
     int elems = 4+classes;
     int j;
     int r, c;
@@ -50,6 +50,7 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    //net.seen = 0;
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 128;
     srand(time(0));
@@ -72,12 +73,12 @@
         train = buffer;
         load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
 
-        /*
-           image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
-           draw_detection(im, train.y.vals[0], 7);
+/*
+           image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[114]);
+           draw_detection(im, train.y.vals[114], 7);
            show_image(im, "truth");
            cvWaitKey(0);
-         */
+*/
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
@@ -108,8 +109,9 @@
     char **paths = (char **)list_to_array(plist);
     int im_size = 448;
     int classes = 20;
-    int background = 0;
-    int num_output = 7*7*(4+classes+background);
+    int background = 1;
+    int nuisance = 0;
+    int num_output = 7*7*(4+classes+background+nuisance);
 
     int m = plist->size;
     int i = 0;
@@ -133,17 +135,19 @@
         matrix pred = network_predict_data(net, val);
         int j, k, class;
         for(j = 0; j < pred.rows; ++j){
-            for(k = 0; k < pred.cols; k += classes+4+background){
+            for(k = 0; k < pred.cols; k += classes+4+background+nuisance){
+                float scale = 1.;
+                if(nuisance) scale = pred.vals[j][k];
                 for(class = 0; class < classes; ++class){
-                    int index = (k)/(classes+4+background); 
+                    int index = (k)/(classes+4+background+nuisance); 
                     int r = index/7;
                     int c = index%7;
-                    int ci = k+classes+background;
+                    int ci = k+classes+background+nuisance;
                     float y = (r + pred.vals[j][ci + 0])/7.;
                     float x = (c + pred.vals[j][ci + 1])/7.;
                     float h = pred.vals[j][ci + 2];
                     float w = pred.vals[j][ci + 3];
-                    printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
+                    printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], y, x, h, w);
                 }
             }
         }

--
Gitblit v1.10.0