From eaf033c0570308dfcd381ed61d274c7f5add7cfc Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 09 Nov 2015 21:27:02 +0000
Subject: [PATCH] Added tiny yolo model

---
 src/network_kernels.cu |    9 ++-------
 1 files changed, 2 insertions(+), 7 deletions(-)

diff --git a/src/network_kernels.cu b/src/network_kernels.cu
index cfc6e83..8561372 100644
--- a/src/network_kernels.cu
+++ b/src/network_kernels.cu
@@ -13,7 +13,6 @@
 #include "crop_layer.h"
 #include "connected_layer.h"
 #include "detection_layer.h"
-#include "region_layer.h"
 #include "convolutional_layer.h"
 #include "deconvolutional_layer.h"
 #include "maxpool_layer.h"
@@ -36,7 +35,7 @@
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
         if(l.delta_gpu){
-            scal_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
+            fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1);
         }
         if(l.type == CONVOLUTIONAL){
             forward_convolutional_layer_gpu(l, state);
@@ -44,8 +43,6 @@
             forward_deconvolutional_layer_gpu(l, state);
         } else if(l.type == DETECTION){
             forward_detection_layer_gpu(l, state);
-        } else if(l.type == REGION){
-            forward_region_layer_gpu(l, state);
         } else if(l.type == CONNECTED){
             forward_connected_layer_gpu(l, state);
         } else if(l.type == CROP){
@@ -96,8 +93,6 @@
             backward_dropout_layer_gpu(l, state);
         } else if(l.type == DETECTION){
             backward_detection_layer_gpu(l, state);
-        } else if(l.type == REGION){
-            backward_region_layer_gpu(l, state);
         } else if(l.type == NORMALIZATION){
             backward_normalization_layer_gpu(l, state);
         } else if(l.type == SOFTMAX){
@@ -134,7 +129,7 @@
     network_state state;
     int x_size = get_network_input_size(net)*net.batch;
     int y_size = get_network_output_size(net)*net.batch;
-    if(net.layers[net.n-1].type == REGION) y_size = net.layers[net.n-1].truths*net.batch;
+    if(net.layers[net.n-1].type == DETECTION) y_size = net.layers[net.n-1].truths*net.batch;
     if(!*net.input_gpu){
         *net.input_gpu = cuda_make_array(x, x_size);
         *net.truth_gpu = cuda_make_array(y, y_size);

--
Gitblit v1.10.0