From ec3d050a76ee8c41f35c4531d3fa07a2d9c28ed3 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 02 Jun 2016 22:25:24 +0000
Subject: [PATCH] hope i didn't break anything
---
src/convolutional_layer.c | 61 +++++++++++++++++++++++-------
1 files changed, 47 insertions(+), 14 deletions(-)
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index a93087f..5575aac 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -88,8 +88,8 @@
return float_to_image(w,h,c,l.delta);
}
-#ifdef CUDNN
size_t get_workspace_size(layer l){
+ #ifdef CUDNN
size_t most = 0;
size_t s = 0;
cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
@@ -117,8 +117,10 @@
&s);
if (s > most) most = s;
return most;
+ #else
+ return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
+ #endif
}
-#endif
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor)
{
@@ -154,7 +156,6 @@
l.outputs = l.out_h * l.out_w * l.out_c;
l.inputs = l.w * l.h * l.c;
- l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
@@ -188,7 +189,6 @@
l.scales_gpu = cuda_make_array(l.scales, n);
l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
- l.workspace_size = out_h*out_w*size*size*c;
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
@@ -255,10 +255,9 @@
CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
0,
&l.bf_algo);
+#endif
+#endif
l.workspace_size = get_workspace_size(l);
-
-#endif
-#endif
l.activation = activation;
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
@@ -315,8 +314,6 @@
l->outputs = l->out_h * l->out_w * l->out_c;
l->inputs = l->w * l->h * l->c;
- l->col_image = realloc(l->col_image,
- out_h*out_w*l->size*l->size*l->c*sizeof(float));
l->output = realloc(l->output,
l->batch*out_h * out_w * l->n*sizeof(float));
l->delta = realloc(l->delta,
@@ -328,7 +325,43 @@
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
+ #ifdef CUDNN
+ cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
+ cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
+ cudnnSetFilter4dDescriptor(l->dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+
+ cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
+ cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
+ cudnnSetFilter4dDescriptor(l->filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+ int padding = l->pad ? l->size/2 : 0;
+ cudnnSetConvolution2dDescriptor(l->convDesc, padding, padding, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
+ cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
+ l->srcTensorDesc,
+ l->filterDesc,
+ l->convDesc,
+ l->dstTensorDesc,
+ CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
+ 0,
+ &l->fw_algo);
+ cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
+ l->filterDesc,
+ l->ddstTensorDesc,
+ l->convDesc,
+ l->dsrcTensorDesc,
+ CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
+ 0,
+ &l->bd_algo);
+ cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
+ l->srcTensorDesc,
+ l->ddstTensorDesc,
+ l->convDesc,
+ l->dfilterDesc,
+ CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
+ 0,
+ &l->bf_algo);
+ #endif
#endif
+ l->workspace_size = get_workspace_size(*l);
}
void add_bias(float *output, float *biases, int batch, int n, int size)
@@ -386,7 +419,7 @@
int n = out_h*out_w;
char *a = l.cfilters;
- float *b = l.col_image;
+ float *b = state.workspace;
float *c = l.output;
for(i = 0; i < l.batch; ++i){
@@ -407,7 +440,7 @@
int n = out_h*out_w;
float *a = l.filters;
- float *b = l.col_image;
+ float *b = state.workspace;
float *c = l.output;
for(i = 0; i < l.batch; ++i){
@@ -439,7 +472,7 @@
for(i = 0; i < l.batch; ++i){
float *a = l.delta + i*m*k;
- float *b = l.col_image;
+ float *b = state.workspace;
float *c = l.filter_updates;
float *im = state.input+i*l.c*l.h*l.w;
@@ -451,11 +484,11 @@
if(state.delta){
a = l.filters;
b = l.delta + i*m*k;
- c = l.col_image;
+ c = state.workspace;
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
- col2im_cpu(l.col_image, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
+ col2im_cpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
}
}
}
--
Gitblit v1.10.0