From ec3d050a76ee8c41f35c4531d3fa07a2d9c28ed3 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 02 Jun 2016 22:25:24 +0000
Subject: [PATCH] hope i didn't break anything
---
src/network.c | 42 +++++++++++++++++++++++++++++++++++++++++-
1 files changed, 41 insertions(+), 1 deletions(-)
diff --git a/src/network.c b/src/network.c
index 32c3ba1..88b7085 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,13 +8,16 @@
#include "crop_layer.h"
#include "connected_layer.h"
+#include "gru_layer.h"
#include "rnn_layer.h"
+#include "crnn_layer.h"
#include "local_layer.h"
#include "convolutional_layer.h"
#include "activation_layer.h"
#include "deconvolutional_layer.h"
#include "detection_layer.h"
#include "normalization_layer.h"
+#include "batchnorm_layer.h"
#include "maxpool_layer.h"
#include "avgpool_layer.h"
#include "cost_layer.h"
@@ -62,6 +65,8 @@
return net.learning_rate * pow(net.gamma, batch_num);
case POLY:
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+ case RANDOM:
+ return net.learning_rate * pow(rand_uniform(0,1), net.power);
case SIG:
return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
default:
@@ -85,6 +90,10 @@
return "connected";
case RNN:
return "rnn";
+ case GRU:
+ return "gru";
+ case CRNN:
+ return "crnn";
case MAXPOOL:
return "maxpool";
case AVGPOOL:
@@ -105,6 +114,8 @@
return "shortcut";
case NORMALIZATION:
return "normalization";
+ case BATCHNORM:
+ return "batchnorm";
default:
break;
}
@@ -126,6 +137,7 @@
void forward_network(network net, network_state state)
{
+ state.workspace = net.workspace;
int i;
for(i = 0; i < net.n; ++i){
state.index = i;
@@ -143,12 +155,18 @@
forward_local_layer(l, state);
} else if(l.type == NORMALIZATION){
forward_normalization_layer(l, state);
+ } else if(l.type == BATCHNORM){
+ forward_batchnorm_layer(l, state);
} else if(l.type == DETECTION){
forward_detection_layer(l, state);
} else if(l.type == CONNECTED){
forward_connected_layer(l, state);
} else if(l.type == RNN){
forward_rnn_layer(l, state);
+ } else if(l.type == GRU){
+ forward_gru_layer(l, state);
+ } else if(l.type == CRNN){
+ forward_crnn_layer(l, state);
} else if(l.type == CROP){
forward_crop_layer(l, state);
} else if(l.type == COST){
@@ -185,6 +203,10 @@
update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == RNN){
update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == GRU){
+ update_gru_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == CRNN){
+ update_crnn_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == LOCAL){
update_local_layer(l, update_batch, rate, net.momentum, net.decay);
}
@@ -193,6 +215,9 @@
float *get_network_output(network net)
{
+ #ifdef GPU
+ return get_network_output_gpu(net);
+ #endif
int i;
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
return net.layers[i].output;
@@ -205,7 +230,7 @@
int count = 0;
for(i = 0; i < net.n; ++i){
if(net.layers[i].type == COST){
- sum += net.layers[i].output[0];
+ sum += net.layers[i].cost[0];
++count;
}
if(net.layers[i].type == DETECTION){
@@ -247,6 +272,8 @@
backward_activation_layer(l, state);
} else if(l.type == NORMALIZATION){
backward_normalization_layer(l, state);
+ } else if(l.type == BATCHNORM){
+ backward_batchnorm_layer(l, state);
} else if(l.type == MAXPOOL){
if(i != 0) backward_maxpool_layer(l, state);
} else if(l.type == AVGPOOL){
@@ -261,6 +288,10 @@
backward_connected_layer(l, state);
} else if(l.type == RNN){
backward_rnn_layer(l, state);
+ } else if(l.type == GRU){
+ backward_gru_layer(l, state);
+ } else if(l.type == CRNN){
+ backward_crnn_layer(l, state);
} else if(l.type == LOCAL){
backward_local_layer(l, state);
} else if(l.type == COST){
@@ -370,6 +401,7 @@
net->w = w;
net->h = h;
int inputs = 0;
+ size_t workspace_size = 0;
//fprintf(stderr, "Resizing to %d x %d...", w, h);
//fflush(stderr);
for (i = 0; i < net->n; ++i){
@@ -389,12 +421,20 @@
}else{
error("Cannot resize this type of layer");
}
+ if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
inputs = l.outputs;
net->layers[i] = l;
w = l.out_w;
h = l.out_h;
if(l.type == AVGPOOL) break;
}
+#ifdef GPU
+ cuda_free(net->workspace);
+ net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+#else
+ free(net->workspace);
+ net->workspace = calloc(1, (workspace_size-1)/sizeof(float)+1);
+#endif
//fprintf(stderr, " Done!\n");
return 0;
}
--
Gitblit v1.10.0