From edbccdfcaf46f11e631afe98796f3e6e170da5d0 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 26 Oct 2014 05:04:34 +0000
Subject: [PATCH] Maybe something changed?

---
 src/parser.c |  450 ++++++++++++++++++++++++++++++++++++++++++++++++-------
 1 files changed, 390 insertions(+), 60 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index cf64b55..79d4a3a 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -4,10 +4,15 @@
 
 #include "parser.h"
 #include "activations.h"
+#include "crop_layer.h"
+#include "cost_layer.h"
 #include "convolutional_layer.h"
 #include "connected_layer.h"
 #include "maxpool_layer.h"
+#include "normalization_layer.h"
 #include "softmax_layer.h"
+#include "dropout_layer.h"
+#include "freeweight_layer.h"
 #include "list.h"
 #include "option_list.h"
 #include "utils.h"
@@ -20,7 +25,12 @@
 int is_convolutional(section *s);
 int is_connected(section *s);
 int is_maxpool(section *s);
+int is_dropout(section *s);
+int is_freeweight(section *s);
 int is_softmax(section *s);
+int is_crop(section *s);
+int is_cost(section *s);
+int is_normalization(section *s);
 list *read_cfg(char *filename);
 
 void free_section(section *s)
@@ -39,115 +49,228 @@
     free(s);
 }
 
-convolutional_layer *parse_convolutional(list *options, network net, int count)
+void parse_data(char *data, float *a, int n)
 {
     int i;
+    if(!data) return;
+    char *curr = data;
+    char *next = data;
+    int done = 0;
+    for(i = 0; i < n && !done; ++i){
+        while(*++next !='\0' && *next != ',');
+        if(*next == '\0') done = 1;
+        *next = '\0';
+        sscanf(curr, "%g", &a[i]);
+        curr = next+1;
+    }
+}
+
+convolutional_layer *parse_convolutional(list *options, network *net, int count)
+{
     int h,w,c;
+    float learning_rate, momentum, decay;
     int n = option_find_int(options, "filters",1);
     int size = option_find_int(options, "size",1);
     int stride = option_find_int(options, "stride",1);
+    int pad = option_find_int(options, "pad",0);
     char *activation_s = option_find_str(options, "activation", "sigmoid");
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
         h = option_find_int(options, "height",1);
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
     }else{
-        image m =  get_network_image_layer(net, count-1);
+        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
+        momentum = option_find_float_quiet(options, "momentum", net->momentum);
+        decay = option_find_float_quiet(options, "decay", net->decay);
+        image m =  get_network_image_layer(*net, count-1);
         h = m.h;
         w = m.w;
         c = m.c;
         if(h == 0) error("Layer before convolutional layer must output image.");
     }
-    convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride, activation);
-    char *data = option_find_str(options, "data", 0);
-    if(data){
-        char *curr = data;
-        char *next = data;
-        for(i = 0; i < n; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->biases[i]);
-            curr = next+1;
-        }
-        for(i = 0; i < c*n*size*size; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->filters[i]);
-            curr = next+1;
-        }
-    }
+    convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(weights, layer->filters, c*n*size*size);
+    parse_data(biases, layer->biases, n);
+    #ifdef GPU
+    push_convolutional_layer(*layer);
+    #endif
     option_unused(options);
     return layer;
 }
 
-connected_layer *parse_connected(list *options, network net, int count)
+connected_layer *parse_connected(list *options, network *net, int count)
 {
-    int i;
     int input;
+    float learning_rate, momentum, decay;
     int output = option_find_int(options, "output",1);
     char *activation_s = option_find_str(options, "activation", "sigmoid");
     ACTIVATION activation = get_activation(activation_s);
     if(count == 0){
         input = option_find_int(options, "input",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
     }else{
-        input =  get_network_output_size_layer(net, count-1);
+        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
+        momentum = option_find_float_quiet(options, "momentum", net->momentum);
+        decay = option_find_float_quiet(options, "decay", net->decay);
+        input =  get_network_output_size_layer(*net, count-1);
     }
-    connected_layer *layer = make_connected_layer(net.batch, input, output, activation);
-    char *data = option_find_str(options, "data", 0);
-    if(data){
-        char *curr = data;
-        char *next = data;
-        for(i = 0; i < output; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->biases[i]);
-            curr = next+1;
-        }
-        for(i = 0; i < input*output; ++i){
-            while(*++next !='\0' && *next != ',');
-            *next = '\0';
-            sscanf(curr, "%g", &layer->weights[i]);
-            curr = next+1;
-        }
-    }
+    connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(biases, layer->biases, output);
+    parse_data(weights, layer->weights, input*output);
+    #ifdef GPU
+    push_connected_layer(*layer);
+    #endif
     option_unused(options);
     return layer;
 }
 
-softmax_layer *parse_softmax(list *options, network net, int count)
+softmax_layer *parse_softmax(list *options, network *net, int count)
 {
     int input;
     if(count == 0){
         input = option_find_int(options, "input",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
     }else{
-        input =  get_network_output_size_layer(net, count-1);
+        input =  get_network_output_size_layer(*net, count-1);
     }
-    softmax_layer *layer = make_softmax_layer(net.batch, input);
+    softmax_layer *layer = make_softmax_layer(net->batch, input);
     option_unused(options);
     return layer;
 }
 
-maxpool_layer *parse_maxpool(list *options, network net, int count)
+cost_layer *parse_cost(list *options, network *net, int count)
 {
+    int input;
+    if(count == 0){
+        input = option_find_int(options, "input",1);
+        net->batch = option_find_int(options, "batch",1);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    cost_layer *layer = make_cost_layer(net->batch, input);
+    option_unused(options);
+    return layer;
+}
+
+crop_layer *parse_crop(list *options, network *net, int count)
+{
+    float learning_rate, momentum, decay;
     int h,w,c;
-    int stride = option_find_int(options, "stride",1);
+    int crop_height = option_find_int(options, "crop_height",1);
+    int crop_width = option_find_int(options, "crop_width",1);
+    int flip = option_find_int(options, "flip",0);
     if(count == 0){
         h = option_find_int(options, "height",1);
         w = option_find_int(options, "width",1);
         c = option_find_int(options, "channels",1);
-        net.batch = option_find_int(options, "batch",1);
+        net->batch = option_find_int(options, "batch",1);
+        learning_rate = option_find_float(options, "learning_rate", .001);
+        momentum = option_find_float(options, "momentum", .9);
+        decay = option_find_float(options, "decay", .0001);
+        net->learning_rate = learning_rate;
+        net->momentum = momentum;
+        net->decay = decay;
     }else{
-        image m =  get_network_image_layer(net, count-1);
+        image m =  get_network_image_layer(*net, count-1);
+        h = m.h;
+        w = m.w;
+        c = m.c;
+        if(h == 0) error("Layer before crop layer must output image.");
+    }
+    crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip);
+    option_unused(options);
+    return layer;
+}
+
+maxpool_layer *parse_maxpool(list *options, network *net, int count)
+{
+    int h,w,c;
+    int stride = option_find_int(options, "stride",1);
+    int size = option_find_int(options, "size",stride);
+    if(count == 0){
+        h = option_find_int(options, "height",1);
+        w = option_find_int(options, "width",1);
+        c = option_find_int(options, "channels",1);
+        net->batch = option_find_int(options, "batch",1);
+    }else{
+        image m =  get_network_image_layer(*net, count-1);
         h = m.h;
         w = m.w;
         c = m.c;
         if(h == 0) error("Layer before convolutional layer must output image.");
     }
-    maxpool_layer *layer = make_maxpool_layer(net.batch,h,w,c,stride);
+    maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride);
+    option_unused(options);
+    return layer;
+}
+
+freeweight_layer *parse_freeweight(list *options, network *net, int count)
+{
+    int input;
+    if(count == 0){
+        net->batch = option_find_int(options, "batch",1);
+        input = option_find_int(options, "input",1);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    freeweight_layer *layer = make_freeweight_layer(net->batch,input);
+    option_unused(options);
+    return layer;
+}
+
+dropout_layer *parse_dropout(list *options, network *net, int count)
+{
+    int input;
+    float probability = option_find_float(options, "probability", .5);
+    if(count == 0){
+        net->batch = option_find_int(options, "batch",1);
+        input = option_find_int(options, "input",1);
+    }else{
+        input =  get_network_output_size_layer(*net, count-1);
+    }
+    dropout_layer *layer = make_dropout_layer(net->batch,input,probability);
+    option_unused(options);
+    return layer;
+}
+
+normalization_layer *parse_normalization(list *options, network *net, int count)
+{
+    int h,w,c;
+    int size = option_find_int(options, "size",1);
+    float alpha = option_find_float(options, "alpha", 0.);
+    float beta = option_find_float(options, "beta", 1.);
+    float kappa = option_find_float(options, "kappa", 1.);
+    if(count == 0){
+        h = option_find_int(options, "height",1);
+        w = option_find_int(options, "width",1);
+        c = option_find_int(options, "channels",1);
+        net->batch = option_find_int(options, "batch",1);
+    }else{
+        image m =  get_network_image_layer(*net, count-1);
+        h = m.h;
+        w = m.w;
+        c = m.c;
+        if(h == 0) error("Layer before convolutional layer must output image.");
+    }
+    normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa);
     option_unused(options);
     return layer;
 }
@@ -163,25 +286,41 @@
         section *s = (section *)n->val;
         list *options = s->options;
         if(is_convolutional(s)){
-            convolutional_layer *layer = parse_convolutional(options, net, count);
+            convolutional_layer *layer = parse_convolutional(options, &net, count);
             net.types[count] = CONVOLUTIONAL;
             net.layers[count] = layer;
-            net.batch = layer->batch;
         }else if(is_connected(s)){
-            connected_layer *layer = parse_connected(options, net, count);
+            connected_layer *layer = parse_connected(options, &net, count);
             net.types[count] = CONNECTED;
             net.layers[count] = layer;
-            net.batch = layer->batch;
+        }else if(is_crop(s)){
+            crop_layer *layer = parse_crop(options, &net, count);
+            net.types[count] = CROP;
+            net.layers[count] = layer;
+        }else if(is_cost(s)){
+            cost_layer *layer = parse_cost(options, &net, count);
+            net.types[count] = COST;
+            net.layers[count] = layer;
         }else if(is_softmax(s)){
-            softmax_layer *layer = parse_softmax(options, net, count);
+            softmax_layer *layer = parse_softmax(options, &net, count);
             net.types[count] = SOFTMAX;
             net.layers[count] = layer;
-            net.batch = layer->batch;
         }else if(is_maxpool(s)){
-            maxpool_layer *layer = parse_maxpool(options, net, count);
+            maxpool_layer *layer = parse_maxpool(options, &net, count);
             net.types[count] = MAXPOOL;
             net.layers[count] = layer;
-            net.batch = layer->batch;
+        }else if(is_normalization(s)){
+            normalization_layer *layer = parse_normalization(options, &net, count);
+            net.types[count] = NORMALIZATION;
+            net.layers[count] = layer;
+        }else if(is_dropout(s)){
+            dropout_layer *layer = parse_dropout(options, &net, count);
+            net.types[count] = DROPOUT;
+            net.layers[count] = layer;
+        }else if(is_freeweight(s)){
+            freeweight_layer *layer = parse_freeweight(options, &net, count);
+            net.types[count] = FREEWEIGHT;
+            net.layers[count] = layer;
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
@@ -195,6 +334,14 @@
     return net;
 }
 
+int is_crop(section *s)
+{
+    return (strcmp(s->type, "[crop]")==0);
+}
+int is_cost(section *s)
+{
+    return (strcmp(s->type, "[cost]")==0);
+}
 int is_convolutional(section *s)
 {
     return (strcmp(s->type, "[conv]")==0
@@ -210,12 +357,25 @@
     return (strcmp(s->type, "[max]")==0
             || strcmp(s->type, "[maxpool]")==0);
 }
+int is_dropout(section *s)
+{
+    return (strcmp(s->type, "[dropout]")==0);
+}
+int is_freeweight(section *s)
+{
+    return (strcmp(s->type, "[freeweight]")==0);
+}
 
 int is_softmax(section *s)
 {
     return (strcmp(s->type, "[soft]")==0
             || strcmp(s->type, "[softmax]")==0);
 }
+int is_normalization(section *s)
+{
+    return (strcmp(s->type, "[lrnorm]")==0
+            || strcmp(s->type, "[localresponsenormalization]")==0);
+}
 
 int read_option(char *s, list *options)
 {
@@ -270,3 +430,173 @@
     return sections;
 }
 
+void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
+{
+    int i;
+    fprintf(fp, "[convolutional]\n");
+    if(count == 0) {
+        fprintf(fp,   "batch=%d\n"
+                "height=%d\n"
+                "width=%d\n"
+                "channels=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n",
+                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay);
+    } else {
+        if(l->learning_rate != net.learning_rate)
+            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+        if(l->momentum != net.momentum)
+            fprintf(fp, "momentum=%g\n", l->momentum);
+        if(l->decay != net.decay)
+            fprintf(fp, "decay=%g\n", l->decay);
+    }
+    fprintf(fp, "filters=%d\n"
+            "size=%d\n"
+            "stride=%d\n"
+            "pad=%d\n"
+            "activation=%s\n",
+            l->n, l->size, l->stride, l->pad,
+            get_activation_string(l->activation));
+    fprintf(fp, "biases=");
+    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
+    fprintf(fp, "\n\n");
+}
+
+void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
+{
+    fprintf(fp, "[freeweight]\n");
+    if(count == 0){
+        fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
+    }
+    fprintf(fp, "\n");
+}
+
+void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
+{
+    fprintf(fp, "[dropout]\n");
+    if(count == 0){
+        fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    }
+    fprintf(fp, "probability=%g\n\n", l->probability);
+}
+
+void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
+{
+    int i;
+    fprintf(fp, "[connected]\n");
+    if(count == 0){
+        fprintf(fp, "batch=%d\n"
+                "input=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n",
+                l->batch, l->inputs, l->learning_rate, l->momentum, l->decay);
+    } else {
+        if(l->learning_rate != net.learning_rate)
+            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
+        if(l->momentum != net.momentum)
+            fprintf(fp, "momentum=%g\n", l->momentum);
+        if(l->decay != net.decay)
+            fprintf(fp, "decay=%g\n", l->decay);
+    }
+    fprintf(fp, "output=%d\n"
+            "activation=%s\n",
+            l->outputs,
+            get_activation_string(l->activation));
+    fprintf(fp, "biases=");
+    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
+    fprintf(fp, "\n");
+    fprintf(fp, "weights=");
+    for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
+    fprintf(fp, "\n\n");
+}
+
+void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
+{
+    fprintf(fp, "[crop]\n");
+    if(count == 0) {
+        fprintf(fp,   "batch=%d\n"
+                "height=%d\n"
+                "width=%d\n"
+                "channels=%d\n"
+                "learning_rate=%g\n"
+                "momentum=%g\n"
+                "decay=%g\n",
+                l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay);
+    }
+    fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
+}
+
+void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
+{
+    fprintf(fp, "[maxpool]\n");
+    if(count == 0) fprintf(fp,   "batch=%d\n"
+            "height=%d\n"
+            "width=%d\n"
+            "channels=%d\n",
+            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
+}
+
+void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
+{
+    fprintf(fp, "[localresponsenormalization]\n");
+    if(count == 0) fprintf(fp,   "batch=%d\n"
+            "height=%d\n"
+            "width=%d\n"
+            "channels=%d\n",
+            l->batch,l->h, l->w, l->c);
+    fprintf(fp, "size=%d\n"
+            "alpha=%g\n"
+            "beta=%g\n"
+            "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
+}
+
+void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
+{
+    fprintf(fp, "[softmax]\n");
+    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    fprintf(fp, "\n");
+}
+
+void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
+{
+    fprintf(fp, "[cost]\n");
+    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
+    fprintf(fp, "\n");
+}
+
+
+void save_network(network net, char *filename)
+{
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+    int i;
+    for(i = 0; i < net.n; ++i)
+    {
+        if(net.types[i] == CONVOLUTIONAL)
+            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
+        else if(net.types[i] == CONNECTED)
+            print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
+        else if(net.types[i] == CROP)
+            print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
+        else if(net.types[i] == MAXPOOL)
+            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
+        else if(net.types[i] == FREEWEIGHT)
+            print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
+        else if(net.types[i] == DROPOUT)
+            print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
+        else if(net.types[i] == NORMALIZATION)
+            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
+        else if(net.types[i] == SOFTMAX)
+            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
+        else if(net.types[i] == COST)
+            print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
+    }
+    fclose(fp);
+}
+

--
Gitblit v1.10.0